T-NPS Header
T-PS Home  |  Editorial Board  |  T-PS in IEEE Xplore  |   Early Access  |  Manuscript Submission
July 2019 FEATURE ARTICLES - THESE ARE OPEN ACCESS FOR A LIMITED TIME
We are pleased to announce that the 2017 Impact Factor for T-PS has increased by 20% and now stands at 1.253!

Neutral Shadowing Force Effect on Structural Properties and Oscillations of Dust Particles in Cryogenic Environment

by Y. Aldakulov; M. Muratov; T. S. Ramazanov; Z. A. Moldabekov
article one image
Recently, it was shown that the neutral shadowing interaction can be significantly stronger in the cryogenic complex plasma than in the plasma with neutrals at room temperature. Here, we present the results of the investigation—by molecular dynamics (MD) simulations—of the impact of the neutral shadowing interaction on the radial pair distribution function and the velocity autocorrelation function (VAF) of the charged dust particles in a 2-D layer. The spectrum of VAF was computed to estimate the influence of the neutral shadowing force on the oscillations of dust particles. We found that the neutral shadowing interaction can significantly affect the structural properties and the characteristic longitudinal oscillation frequency of dust particles if the characteristic radius of the neutral shadowing interaction exceeds a mean interdust particle distance. Read more...
-----------------------

Numerical Simulation on Microwave Transmission Properties of 1-D Periodic Super-Lattice Plasma Photonic Crystals With a Finite-Difference Time-Domain Method

by Xinhong Hao; Rikang Zhao; Ping Li; Ben Li; Jiting Ouyang
article two image
We here report the investigation into the microwave (MW) transmission properties of 1-D periodic super-lattice plasma photonic crystals (PPCs) through numerical simulation with a 2-D finite-difference time-domain method. The super-lattice PPCs are constituted by plasma columns each surrounded by a glass layer, two kinds of which are defined. One is constituted by columns of different shapes and the other by columns of the same shape, whereas other parameter(s) configured unequal. The transmittance bandgap (BG) characters (number, position, depth, and width) of super-lattice PPCs with columns different in shape, plasma frequency ( fp ), electron-collision frequency ( νm ), and diameter ( d ), respectively, are compared with those of the corresponding simple lattices with similar parametric configurations. An averaging effect is found in the cases of shape, fp , and νm , while decreasing d can serve as an equivalent effect of increasing lattice constant ( L ). Read more...
-----------------------

Stability of Space-Charged-Limited Electron Beam Diodes Including Applied- and Self-Magnetic Field Effects

by S. B. Swanekamp; P. F. Ottinger; S. P. Obenschain; I. M. Rittersdorf; M. C. Myers; D. M. Kehne
article three image
The theoretical analysis of large-area diodes shows that the electron flow in the diode is subject to the transit-time instability (TTI). The TTI can modulate the electron beam energy at the anode and add a transverse beam temperature. Both of these effects can have negative consequences on many diode applications that require a high-quality mono-energetic electron beam. A distributed transmission line model of the diode is developed which allows techniques from microwave engineering to be applied to the unstable diode. The theory suggests that a resistively loaded, periodic structure of slots in the cathode can stabilize the TTI. The results from particle-in-cell (PIC) simulations of a large-area electron-beam diode in 2-D are presented that support this conclusion. Read more...
-----------------------
header

A PUBLICATION OF THE IEEE NUCLEAR AND PLASMA SCIENCES SOCIETY

July 2019  |  VOLUME 47  |  NUMBER 7  |  ITPSBD  |  (ISSN 0093-3813)

SPECIAL ISSUE ON PHYSICS OF DUSTY PLASMAS


GUEST EDITORIAL
Special Issue on Physics of Dusty Plasmas 2019 . . . . . . . . . . . . . . . . . . . . . . . . . . G. Lapenta, C. A. Romero-Talamas, Z. Wang, and J. Williams


SPECIAL ISSUE PAPERS
Rotation of Dust Structures in a Magnetic Field in a DC Glow Discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. R. Abdirakhmanov, Z. A. Moldabekov, S. K. Kodanova, M. K. Dosbolayev, and T. S. Ramazanov
Simulation of Dynamic Characteristics of Beryllium, Carbon, and Tungsten Dust in the Edge Fusion Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. K. Bastykova, S. K. Kodanova, T. S. Ramazanov, A. K. Issanova, and S. A. Maiorov
Investigation of Synthesis of Carbon Nanowalls by the Chemical Vapor Deposition Method in the Plasma of a Radio Frequency Capacitive
      Discharge
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Batryshev, Y. Yerlanuly, T. Ramazanov, and M. Gabdullin
Experimental Investigation of the Properties of Plasma-Dust Formations on Pulsed Plasma Accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Dosbolayev, Z. Raiymkhanov, A. Tazhen, and T. Ramazanov
Charging of a Dust Particle in a Magnetized Gas Discharge Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . S. K. Kodanova, N. K. Bastykova, T. S. Ramazanov, G. N. Nigmetova, S. A. Maiorov, and Z. A. Moldabekov
Dust Particle Pair Correlation Functions and the Nonlinear Effect of Interaction Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Kong, K. Qiao, L. S. Matthews, and T. W. Hyde
Neutral Shadowing Force Effect on Structural Properties and Oscillations of Dust Particles in Cryogenic Environment . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Aldakulov, M. Muratov, T. S. Ramazanov, and Z. A. Moldabekov
Influence of Gas Temperature on Nucleation and Growth of Dust Nanoparticles in RF Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. A. Orazbayev, M. Henault, T. S. Ramazanov, L. Boufendi, D. G. Batryshev, and M. T. Gabdullin
First Observation of Crystallike Configuration of Microorganisms in an RF Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Sanpei, T. Kigami, Y. Hayashi, H. Himura, S. Masamune, and M. Sampei
Mapping the Plasma Potential in a Glass Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Scott, N. Ellis, M. Chen, L. S. Matthews, and T. W. Hyde
A Nonlocal Theory of Current-Driven Low-Frequency Modes in a Magnetized Strongly Coupled Collisional Dusty Plasma . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. R. Segwal and S. C. Sharma
Diffusive Motion in a 3-D Cluster in PK-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Wei,
     B. Liu,  J. Goree,  M. Y. Pustylnik,  H. M. Thomas,  V. E. Fortov,  A. M. Lipaev,  A. D. Usachev,  V. I. Molotkov,  O. F. Petrov, and M. H. Thoma

Measurement of Thermal Effects in the Dust Acoustic Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Williams


PART II OF TWO PARTS


REGULAR PAPERS
Basic Processes in Fully and Partially Ionized Plasmas
Equilibrium Configuration Reconstruction of Multipole Galatea Magnetic Trap Based on Magnetic Measurement . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Tao, X. Jin, Z. Li, and W. Tong
Mode Structure of a Transparent Cathode Discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Hardiment and M. D. Bowden
A Filamentary Plasma Jet Generated by Argon Dielectric-Barrier Discharge in Ambient Air . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Li, B. Lei, J. Wang, T. Zhang, J. Tang, Y. Wang, W. Zhao, and Y. Duan

Microwave Generation and Microwave-Plasma Interaction
Functional Analysis Method for Nonlinear Theory of Gyrotrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. Wang, H. Xiao, L. Li, and O. Dumbrajs
Tapered Cavity Measurement for 42-GHz, 200-kW Gyrotron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Mishra, A. K. Sinha, and A. Bera
Electrical and Thermal Design of a W-Band Gyrotron Interaction Cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Karmakar, R. Sudhakar, J. C. Mudiganti, R. Seshadri, and M. V. Kartikeyan
Optimal Operating Conditions Based on Mode Competition for Maximum Efficiency of Double-Strapped Magnetron . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J.-H. Han and S.-K. Ryu
Numerical Simulation on Microwave Transmission Properties of 1-D Periodic Super-Lattice Plasma Photonic Crystals With a Finite-Difference
      Time-Domain Method
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Hao, P. Li, R. Zhao, B. Li, and J. Ouyang
Thermal and Optical Study on the Frequency Dependence of an Atmospheric Microwave Argon Plasma Jet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Schopp, N. Britun, J. Voráč, P. Synek, R. Snyders, and H. Heuermann

Charged Particle Beams and Sources
Magnetic Field Integral Requirements and Measurement of 20-mm Period Hybrid Undulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Mishra, M. Gehlot, R. Khullar, and G. Sharma
Stability of Space-Charged-Limited Electron Beam Diodes Including Applied- and Self-Magnetic Field Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. B. Swanekamp, P. F. Ottinger, S. P. Obenschain, I. M. Rittersdorf, M. C. Myers, and D. M. Kehne

High Energy Density Plasmas and Their Interactions
Plasma Jet Formation Disruption From a Critical Applied Uniform Axial Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T. Byvank, N. Hamlin, L. Atoyan, C. E. Seyler, and B. R. Kusse

Industrial, Commercial, and Medical Applications of Plasmas
Optical Emission Spectroscopy Investigation of a 1-atm DC Glow Discharge With Liquid Anode and Associated Self-Organization Patterns . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. E. Kovach, M. C. García, and J. E. Foster

Pulsed Power Science and Technology
Forced 2-D Energy Transitions Suitable for High Power Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. L. Viviani
GaN Transistors for Miniaturized Pulsed-Power Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. Samizadeh Nikoo, A. Jafari, and E. Matioli
Nonparametric Modeling and Parameter Optimization of Multistage Synchronous Induction Coilgun . . . . . . . . . . . . . . . X. Niu, W. Li, and J. Feng
Surface Charging on Epoxy/Al2O3 Nanocomposites Under DC Voltage Superimposed by Repetitive Pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Gao, Z. Li, N. Zhao, M. Wang, T. Han, and Y. Liu

Arcs & MHD
Investigation of Short-Arc High-Pressure Xenon Discharge: Effect of Electrode Material Evaporation on Discharge Properties and Pulse
      Operation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. A. Timofeev, V. S. Sukhomlinov, G. Zissis, I. V. Mukharaeva, and P. Dupuis

Dusty Plasmas
Effect of Trapping of Heavy Negative Ions on the Evolution of Shock Wave in a Dust Charge Fluctuating Plasma: A Trapped K-dV-Burgers’
     Equation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. N. Dev, R. K. Kalita, M. K. Deka, K. Goswami, and J. Sarma
Transport of Dust Particles in Very Low-Pressure Magnetized Plasma Studied by Rapid Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Rojo, X. Glad, J. L. Briançon, J. Margot, S. Dap, and R. Clergereaux

Fusion Science and Technology
ITER Torus Diamond Window Unit: FEM Analyses and Impact on the Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . G. Aiello, M. Gagliardi, A. Meier, G. Saibene, T. A. Scherer, S. Schreck, P. Spaeh, D. Strauss, and A. Vaccaro
MHD Mode Analysis Using the Unevenly Spaced Mirnov Coils in the Keda Torus eXperiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . M. Tan, H. Li, C. Tu, T. Deng, Z. Li, B. Luo, J. Xie, T. Lan, A. Liu, W. Mao, W. Ding, C. Xiao, G. Zhuang, and W. Liu
Robust Regression for Automatic Fusion Plasma Analysis Based on Generative Modeling . . . . . . . . . . . . . . . . . K. Fujii, C. Suzuki, and M. Hasuo

Electromagnetic Launch Science and Technology
Investigation of the Armature Contact Efficiency in a Railgun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Liu, H. Miao, and M. Liu
A Novel Structure of Augmented Railgun Using Multilayer Magnets and Sabots . . . . . . . . . . . . . . . . . . . M. B. Heydari, M. Asgari, and A. Keshtkar
The NGL-60 Railgun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Hundertmark, G. Vincent, F. Schubert, and J. Urban
Multishot Experiments With the RAFIRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Wild, F. Alouahabi, and M. Schneider
Simulations and Experiments of EMFY-1 Electromagnetic Launcher . . . . . . D. Ceylan, M. Karagöz, Y. Çevik, B. Yıldırım, H. Polat, and O. Keysan

Terahertz Science and Technology
Two-Color Terahertz Radiation Emission in Quasi-Periodic Smith–Purcell Structures . . . . . . . . . . . . . . . . N. Asadian, S. Matloub, and A. Rostami

Special Issue on Electromagnetic Launchers-2018
Design of Time Sequence Discharging Control System for Pulse Power Supply Modules . . . . . K. Liu, X. Xu, D. Zhang, R. Fu, Y. Sun, and P. Yan
Simulation-Based Firing Accuracy Analysis for Electromagnetic Railgun With Uncertainty . . . . . . . . . . . . . P. Ma, X. Shang, T. Chao, and M. Yang

Special Issue for Plenary, Invited and Selected Papers from the 2018 Asia-Pacific Conference on Plasma and Terahertz Science
Thermal Flow Characteristics of the Triple Plasma Torch System for Nanoparticle Synthesis . . T.-H. Kim, Y. H. Lee, M. Kim, J.-H. Oh, and S. Choi

Special Issue-Selected Papers from SOFE 2017
An Equation of State and Compendium of Thermophysical Properties of Liquid Tin, a Prospective Plasma-Facing Material . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. W. Humrickhouse


Home | Contact & Support | Accessibility | Nondiscrimination Policy | Feedback | Privacy and Opting Out of Cookies

© Copyright 2019 IEEE - All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions. A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.

If you have questions about this mailing, or need assistance, please direct your inquiries to the IEEE Contact Center. Replies to this message do not reach IEEE.

[Response: Read Receipt]
If you would like to be removed from this email distribution, please [Response: Unsubscribe from List]. If you have unsubscribed in error, please [Response: Subscribe to List].