T-RPMS Header
T-RPMS Home  |   Editorial Board  |   T-RPMS in IEEE Xplore  |   Early Access  |    Manuscript Submission
FEATURED STORIES - MAY 2019

Simultaneous PET-MR-EEG: Technology, Challenges and Application in Clinical Neuroscience

by I. Neuner, R. Rajkumar, C. Régio Brambilla, S. Ramkiran, A. Ruch, L. Orth, E. Farrher, J. Mauler, C. Wyss, E. Rota Kops, J. Scheins, L. Tellmann, M. Lang, J. Ermert, J. Dammers, B. Neumaier, C. Lerche, K. Heekeren, W. Kawohl, K.-J. Langen, H. Herzog, N. J. Shah
article 1 photo
Due to technological developments in positron emission tomography (PET) detectors and PET-MR integration, the simultaneous measurement of PET-MR-EEG has become feasible, offering the possibility of exploring the complementary information provided by each modality. Studies have already shown the benefits of simultaneous measurement using PET-MR, however, such achievements come with different technical and practical challenges. In this context, we aim to give an overview of the technical challenges involved in integrating electroencephalography with hybrid PET-MR scanners and demonstrate possible solutions. When acquiring simultaneous data from multiple modalities, the data acquisition protocol should be optimized in order to utilize time and complementary information most effectively. more...
-----------------------

Initial Results of the MINDView PET Insert Inside the 3T mMR

by Antonio J. Gonzalez, Andrea Gonzalez-Montoro, Luis F. Vidal, Julio Barbera, Sebastian Aussenhofer, Liczandro Hernandez, Laura Moliner, Filomeno Sanchez, Filomeno Sanchez, Edwin J. Pincay, Gabriel Cañizares, Efthymios Lamprou, Sebastian Sanchez, Juan V. Catret, Santiago Jiménez-Serrano, Jorge Cabello, Markus Schwaiger, Amadeo Iborra, Thibaut Merlin, Dimitris Visvikis, Jose M. Benlloch
article 2 photo
Hybrid molecular and anatomical imaging devices, especially when simultaneously working, have shown to provide advantages over sequential acquisitions. In particular, we present in this preliminary study, the working performance of a brain positron emission tomography (PET) insert, within a 3T magnetic resonance imaging (MRI) system. To our knowledge, this is the largest PET system based on monolithic LYSO blocks. more...  
-----------------------

Enhancement of Partial Volume Correction in MR-Guided PET Image Reconstruction by Using MRI Voxel Sizes

by Martin A. Belzunce, Abolfazl Mehranian, Andrew J. Reader
image for article 3
Positron emission tomography (PET) suffers from poor spatial resolution which results in quantitative bias when evaluating the radiotracer uptake in small anatomical regions, such as the striatum in the brain which is of importance in this paper of neurodegenerative diseases. These partial volume effects need to be compensated for by employing partial volume correction (PVC) methods in order to achieve quantitatively accurate images. Two important PVC methods applied during the reconstruction are resolution modeling, which suffers from Gibbs artifacts, and penalized likelihood using anatomical priors. The introduction of clinical simultaneous PET-MR scanners has attracted new attention for the latter methods and brought new opportunities to use MRI information to assist PET image reconstruction in order to improve image quality. In this context, MR images are usually down-sampled to the PET resolution before being used in MR-guided PET reconstruction. However, the reconstruction of PET images using the MRI voxel size could achieve a better utilization of the high resolution anatomical information and improve the PVC obtained with these methods. more...
-----------------------

Design and Detector Performance of the PET Component of the TRIMAGE PET/MR/EEG Scanner

by Nicola Belcari, Maria Giuseppina Bisogni, Niccolò Camarlinghi, Pietro Carra, Piergiorgio Cerello, Matteo Morrocchi, Alessandra Patera, Giancarlo Sportelli, Alberto Del Guerra
image for article 4
The TRIMAGE project aims at developing a brain-dedicated PET/MR/EEG system able to perform simultaneous PET, MR, and EEG acquisitions for application in schizophrenia. Both PET and MR components have been designed in this project. The PET component consists of a full ring with 18 sectors each comprising three square detector modules. The modules are based on dual-layer staggered matrices of LYSO crystals read out by silicon photomultipliers. This paper describes in full detail the final version of the PET detectors and the related electronics. It also reports on the preliminary performance of a pair of sectors in terms of pixel resolvability index (RI), energy resolution, singles count rate capability, and coincidence time resolution (CTR). The procedures used for the optimization and calibration of PET detector are described. more...
-----------------------

Intrascanner Reproducibility of an SPM-Based Head MR-Based Attenuation Correction Method

by Ivan S. Klyuzhin, Jessie F. Fu, Nikolay Shenkov, Arman Rahmim, and Vesna Sossi
image for article 4
Recently, an exhaustive examination of 11 state-of-the-art MR-based attenuation correction (AC) concluded that there are currently a few methods showing similar results compared to the gold-standard, CT-based AC. While the study presented a thorough portfolio of metrics to quantify accuracy (bias) and quality, it lacked one of the most important metrics to quantify robustness that is critical for its clinical applicability: intrascanner reproducibility (repeatability). In this paper, we provide for the first time a study of the repeatability of one of the outperforming brain MR-based AC methods: the statistical parametric mapping (SPM)-based pseudo-CT approach. more...
-----------------------
T-RPMS headerT-RPMS header

A PUBLICATION OF THE IEEE NUCLEAR AND PLASMA SCIENCES SOCIETY


EDITORIAL
Dedicated Molecular Imaging Systems for Human Neurological Studies . . . . . . . . . . . . . . . . . B. F. Hutton, T. Yamaya, and L. R. Furenlid
Brain-Dedicated Emission Tomography Systems: A Perspective on Requirements for Clinical Research and Clinical Needs in Brain
     Imaging
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. E. Carson and P. H. Kuo

TOPICAL REVIEW
Imaging in Neurodegeneration: Movement Disorders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. Sossi, J.-C. Cheng, and I. S. Klyuzhin

SCINTILLATORS AND DETECTORS
Geometry Optimization of a Dual-Layer Offset Detector for Use in Simultaneous PET/MR Neuroimaging . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Teimoorisichani and A. L. Goertzen
Time Resolution Studies for a 1-mm Resolution Clinical PET System With a Charge Sharing Readout and Leading Edge
     Discrimination
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. F. C. Hsu, D. L. Freese, D. R. Innes, and C. S. Levin
Design and Detector Performance of the PET Component of the TRIMAGE PET/MR/EEG Scanner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . N. Belcari, M. G. Bisogni, N. O. Camarlinghi, P. Carra, P. Cerello, M. Morrocchi, A. Patera, G. Sportelli, and A. Del Guerra
MAPSSIC, a Novel CMOS Intracerebral Positrons Probe for Deep Brain Imaging in Awake and Freely Moving Rats: A Monte
     Carlo Study
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Ammour, J. Heymes, M. Bautista, S. Fieux, F. Gensolen, M. Kachel, A. Dubois,
     F. Lefebvre,   F. Pain,   P. Pangaud,   L. Pinot,   J. Baudot,   P. Gisquet-Verrier,   P. Laniece,   C. Morel,   L. Zimmer,   and  M.-A. Verdier


IMAGE RECONSTRUCTION AND DATA PROCESSING
Enhancement of Partial Volume Correction in MR-Guided PET Image Reconstruction by Using MRI Voxel Sizes . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. A. Belzunce, A. Mehranian, and A. J. Reader
Intrascanner Reproducibility of an SPM-Based Head MR-Based Attenuation Correction Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Izquierdo-Garcia, M. C. Eldaief, M. G. Vangel, and C. Catana

CAMERA DESIGN AND IMAGING PERFORMANCE
Performance Simulation of an Ultrahigh Resolution Brain PET Scanner Using 1.2-mm Pixel Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . É. Gaudin, M. Toussaint, C. Thibaudeau, M. Paillé, R. Fontaine, and R. Lecomte
Initial Results of the MINDView PET Insert Inside the 3T mMR . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. J. Gonzalez, A. Gonzalez-Montoro,
     L. F. Vidal,  J. Barbera,  S. Aussenhofer,  L. Hernandez,  L. Moliner, F. Sanchez, C. Correcher, E. J. Pincay, G. Cañizares, E. Lamprou,
     S. Sanchez,   J. V. Catret,   S. Jiménez-Serrano,   J. Cabello,   M. Schwaiger,   A. Iborra,   T. Merlin,   D. Visvikis,   and   J. M. Benlloch

The Jülich Experience With Simultaneous 3T MR-BrainPET: Methods and Technology . . . . . . . . . . . . . . . . . . L. Caldeira, E. Rota Kops,
     S. D. Yun, N. da Silva, J. Mauler, C. Weirich, J. Scheins, H. Herzog, L. Tellmann, P. Lohmann, K.-J. Langen, C. Lerche, and N. J. Shah

Performance Estimation for the High Resolution CaLIPSO Brain PET Scanner: A Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O. Kochebina, S. Jan, S. Stute, V. Sharyy, P. Verrecchia, X. Mancardi, and D. Yvon
Comparison of Noise Equivalent Count Rates (NECRs) for the PET Systems With Different Ring Diameter and Electronics . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Nakanishi, Y. Hirano, and S. Yamamoto
Simultaneous PET-MR-EEG: Technology, Challenges and Application in Clinical Neuroscience . . . . . . . . . . . . . . . . . . . . . . . . . . I. Neuner,
     R. Rajkumar, C. Régio Brambilla, S. Ramkiran, A. Ruch, L. Orth, E. Farrher, J. Mauler, C. Wyss, E. Rota Kops, J. Scheins, L. Tellmann,
     M. Lang,   J. Ermert,   J. Dammers,   B. Neumaier,   C. Lerche,   K. Heekeren,   W. Kawohl,  K.-J. Langen,  H. Herzog,  and  N. J. Shah


Home | Contact & Support | Accessibility | Nondiscrimination Policy | Feedback | Privacy and Opting Out of Cookies

© Copyright 2019 IEEE – All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions. A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.

[Response: Read Receipt]

If you have questions about this mailing, or need assistance, please direct your inquiries to the IEEE Contact Center. Replies to this message do not reach IEEE.

If you would like to be removed from this email distribution, please [Response: Unsubscribe from List]. If you have unsubscribed in error, please [Response: Subscribe to List].