T-NPS Header
T-PS Home  |  Editorial Board  |  T-PS in IEEE Xplore  |   Early Access  |  Manuscript Submission
May 2019 FEATURE ARTICLES - THESE ARE OPEN ACCESS FOR A LIMITED TIME
We are pleased to announce that the 2017 Impact Factor for T-PS has increased by 20% and now stands at 1.253![Response: Read Receipt]

A Frequency-Tunable V -Band Radial Relativistic Backward-Wave Oscillator

by Fuxiang Yang, Xiaoping Zhang
article one image
In this paper, we propose a novel frequency-tunable V -band radial-line backward-wave oscillator (BWO). It operates in two high-order modes (i.e., TM 02 or TM 03 modes) so as to achieve a high power capacity, the reflector of which can effectively reduce the microwave leakage from the radial slow wave structure (SWS) to the diode region. The SWS is segmented into two sections, which can enhance the interaction between the electron beam and microwaves. The drift tube in between is capable of adjusting the operation frequency. In particle simulations, with the tube length of 6.1 mm, high-power microwaves with a frequency of 60.56 GHz are obtainable and the output power is 1.5 GW. The electron beam voltage is 524 kV and the beam current is 16.27 kA. By simply shrinking the tube to 3.9 mm, the operation frequency is tuned to 78.89 GHz and the microwave power yielded is 586.75 MW. This work validates the feasibility of tuning a radial-line BWO between two high-order modes, which will enlighten the design of other future frequency-tunable high-power microwave sources. more...
-----------------------

Relativistic Charged-Particle Beam Space-Charge Limited Current in Finite Length Coaxial Drift Tube

by Tetyana Yatsenko, Gennadii V. Sotnikov, Salvador Portillo, Kostyantyn Ilyenko
article two image
In the strong axial (guide) magnetic field and uniform beam density approximations, we calculate scalar potential distribution induced by axisymmetric annular relativistic charged-particle beam in a finite-length coaxial drift tube. This scalar potential distribution allows us to find an approximate radial position at which the extremum of the scalar potential is attained in the coaxial drift tube inside the annular relativistic charged-particle beam. By knowing the approximate extremal radial position, we obtain the analytical estimate for the space-charge limited (SCL) current of axisymmetric annular (finite thickness) relativistic charged-particle beam propagating in strong axial magnetic field in a finite length coaxial drift tube and establish a simple correspondence of this result to that in a long coaxial drift tube. A comparison of numerical nonlinear calculations and the analytical estimate for the SCL current in the finite-length coaxial drift tube is also given. more...
-----------------------

Characteristics of Ar K- and L-Shell Radiations in the Divergent Gas-Puff Z -Pinch and the Application to Contact Photography

by Keiichi Takasugi, Mineyuki Nishio
article three image
Ar divergent gas-puff Z -pinch discharge with reversed polarity was performed. Spectroscopic and spatial properties of K-shell and L-shell radiations emitted from highly ionized Ar ions were investigated. It was confirmed that L-shell radiation was spreading in the axial direction, whereas K-shell radiation was emitted from a small spot. The spot size of K-shell radiation was measured, and the diameter of the spot was 34±9 μm . Small creatures were observed using the K-shell radiation emitted from the spot. Repetitive and intense point radiation source with limited spectrum was realized by the divergent gas-puff Z -pinch. more...
-----------------------

Brief History of the EML Symposia: 1980-2018

by Ian R. McNab
article three image
Following the pioneering research studies by individual inventors and teams from the 1840s to the 1960s on various aspects of electromagnetic launch using railguns, coilguns, and linear motors, there has been an explosion of interest since the 1970s. Much of this growth has been discussed at the International Electro-Magnetic Launcher Symposia that have taken place approximately every two years from 1980 to 2018. A brief description and a summary of the early work of pioneers in this field as well as the symposia is provided here. Selected papers from the symposia have been archived in the IEEE Transactions on Magnetics and the IEEE Transactions on Plasma Science. more...
-----------------------

Multishot Damage of Insulator in a Medium-Caliber and High Linear Current Density Launcher

by Weikang Zhao, Rong Xu, Youjun Kong, Weiqun Yuan, Ping Yan
article three image
As an important part of pulsed high-current launcher, insulator takes the functions of electrical insulation and support. Surveys were conducted after multishot to analysis matrix damage and insulation performance of insulator based on a medium-caliber and high linear current density launcher. Mechanical damage of matrix is mainly related to local current. The most serious damage located at zone of flattop and initial decline stage. In addition, serious damage may be caused by sprayed molten aluminum rather than high-temperature plasma. Metal contamination is dominated by local current and contact condition of rail–armature. There are more metal deposits on surface of high current and high muzzle voltage zones, and corresponding flashover voltages decrease significantly. Considering the effect of different damage forms and the operation conditions, the main damage form is matrix ablation located at the contact position of rail–insulator rather than the degradation of electrical insulation. Moreover, the main damage form of bore insulators is different for variety of caliber and linear current density launchers. Insulation damage may be considered mainly in small-caliber and low linear current density launcher, while mechanical damage may be considered mainly in large-caliber launcher and high linear current density launcher. more...
-----------------------
header

A PUBLICATION OF THE IEEE NUCLEAR AND PLASMA SCIENCES SOCIETY

May 2019  |  VOLUME 47  |  NUMBER 5  |  ITPSBD  |  (ISSN 0093-3813)
PART I OF FOUR PARTS

SPECIAL ISSUE ON PLENARY, INVITED AND SELECTED PAPERS FROM THE 2018 ASIA-PACIFIC
CONFERENCE ON PLASMA AND TERAHERTZ SCIENCE


GUEST EDITORIAL
Special Issue for Plenary, Invited, and Selected Papers From the 2018 Asia-Pacific Conference on Plasma and Terahertz Science . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. K. Chu, C. Chang, T. Shao, H. J. Lee, and R. L.-K. Ang


SPECIAL ISSUE PAPERS
Electromagnetic Compatibility in Electron Cyclotron Resonance Heating System . . . . . . . . . . . . . . . . . . . W. Xu, H. Xu, F. Liu, H. Hu, and J. Feng
Characteristics of a Nanosecond Pulsed Bubble Discharge in N2/O2 Atmospheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Zhou, D. Yang, W. Wang, S. Wang, Z. Zhao, L. Zhang, and H. Yuan
A Nanosecond Pulsed Generator With Fast-Solid-State Switch for Synchronous Discharge in Plasma Synthetic Jet Actuators . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Cheng, B. Huang, C. Zhang, F. Kong, Z. Luo, and T. Shao
Effect of Nitrogen Addition on Electron Density and Temperature of Cascaded Arc Argon Discharge Plasma Diagnosed
     by Laser Thomson Scattering
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Wang, J. Shi, C. Li, C. Feng, and H. Ding
Thermodynamic Properties of Negative Discharge Channels in a 1-m Air Gap Measured by Optical Interferometry . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Cui, C. Zhuang, X. Zhou, R. Zeng, and J. He
Influence of High-Voltage Electrode Arrangement on Downstream Uniformity of Jet Array . . . . . . . . . . . . . . . . . L. Wang, X. Li, F. Liu, and Z. Fang
Discharge Modes of Electrical Explosion of Aluminum Wires in Argon . . . . . . . . . . . . X. Li, H. Shi, C. Liu, J. Wu, L. Chen, S. Qiu, X. Li, and A. Qiu
Positive Leader Velocity and Discharge Current Considering Leader Branching Under Different Air Pressures . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Ma, C. Zhuang, Z. Wang, and R. Zeng
Experimental Investigation on a Multicathode Dielectric-Barrier Discharge: Effects of Airflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J.-F. Tang, D.-S. Zhou, M. Tang, X.-M. Zhu, and C.-H. Zhang
Research on the Dynamic Model of Plasma Ignition Process of Solid Propellant . . . . . . . . . . . . . . . . . . . . . . . Q. Wang, Y. Hang, X. Li, and S. Jia
Effect of Frequency on Arc Motion in Multiple Parallel Contacts' System . . . . . . . . . . . . . . . . . . . . J. Yin, Q. Wang, B. Zhang, P. Zhang, and X. Li
Nonmonotonous Phenomenon of Corona Discharge Characteristics Under Different Airflow Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D.-S. Zhou, J.-F. Tang, M. Tang, X.-M. Zhu, and C.-H. Zhang
Some Advances in Theory and Experiment of High-Frequency Vacuum Electron Devices in China (Invited Paper) . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Gong, Q. Zhou, M. Hu, Y. Zhang, X. Li, H. Gong, J. Wang, D. Liu, Y. Liu, Z. Duan, and J. Feng


PART II OF FOUR PARTS

SPECIAL ISSUE ON PLENARY, INVITED AND SELECTED MINICOURSE TUTORIAL PAPERS FROM ICOPS-2018


GUEST EDITORIAL
Special Issue on Plenary, Invited and Selected Minicourse Tutorial Papers from ICOPS 2018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. J. Gitomer


SPECIAL ISSUE PAPERS
On the Similarities of Low-Temperature Plasma Discharges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Fu and J. P. Verboncoeur
Improvement of Electrical Measurement of a Dielectric Barrier Discharge Plasma Jet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. B. Nguyen, Q. H. Trinh, M. M. Hossain, W. G. Lee, and Y. S. Mok
Gas Breakdown in Microgaps With a Surface Protrusion on the Electrode . . . . . . . . . . . . . . . . . . . Y. Fu, J. Krek, P. Zhang, and J. P. Verboncoeur
Correlations and Cascades in Magnetized Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Beckwith, P. Grete, and B. W. O’Shea
Carbon Nanotube Fiber Field Emission Array Cathodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. B. Fairchild, P. Zhang, J. Park, T. C. Back, D. Marincel, Z. Huang, and M. Pasquali
Design, Fabrication, and Cold Testing of a Ka-Band kW-Class High Bandwidth Dielectric-Loaded Traveling-Wave Tube . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E. I. Simakov, B. E. Carlsten, F. L. Krawczyk, K. E. Nichols, W. P. Romero, and M. Zuboraj
Radiation-Belt Remediation Using Space-Based Antennas and Electron Beams . . . . . . . . . . . B. E. Carlsten, P. L. Colestock, G. S. Cunningham,
     G. L. Delzanno, E. E. Dors, M. A. Holloway, C. A. Jeffery, J. W. Lewellen, Q. R. Marksteiner, D. C. Nguyen, G. D. Reeves, and K. A. Shipman

Power Flow in Pulsed-Power Systems: The Influence of Hall Physics and Modeling of the Plasma–Vacuum Interface . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. D. Hamlin and C. E. Seyler
Linearized Coulomb Collision Operator for Simulation of Interpenetrating Plasma Streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . A. M. Dimits, J. W. Banks, R. L. Berger, S. Brunner, T. Chapman, D. Copeland, D. Ghosh, W. J. Arrighi, J. Hittinger, and I. Joseph
Assessing Stagnation Conditions and Identifying Trends in Magnetized Liner Inertial Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. R. Gomez,
     S. A. Slutz, P. F. Knapp, K. D. Hahn, M. R. Weis, E. C. Harding, M. Geissel, J. R. Fein, M. E. Glinsky, S. B. Hansen,  A. J. Harvey-Thompson,
     C. A. Jennings,  I. C. Smith,  D. Woodbury,  D. J. Ampleford,  T. J. Awe,  G. A. Chandler, M. H. Hess, D. C. Lamppa, C. E. Myers, C. L. Ruiz,
     A. B. Sefkow,   J. Schwarz,   D. A. Yager-Elorriaga,   B. Jones,   J. L. Porter,   K. J. Peterson, R. D. McBride, G. A. Rochau, and D. B. Sinars

Time-Resolved Electron Density Measurement Characterization of E–H-Modes for Inductively Coupled Plasma Instabilities . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. J. Coumou, S. T. Smith, D. J. Peterson, and S. C. Shannon
New Trends in Microwave Imaging Diagnostics and Application to Burning Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Zhu, J.-H. Yu, M. Chen, B. Tobias, and N. C. Luhmann, Jr.


PART III OF FOUR PARTS

SPECIAL ISSUE ON ELECTROMAGNETIC LAUNCHERS-2018


GUEST EDITORIAL
Special Issue on Electromagnetic Launchers-2018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Wetz, X. Yu, and M. Schneider


SPECIAL ISSUE PAPERS
Brief History of the EML Symposia: 1980–2018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. R. McNab
Heat Generation and Thermal Management of a Rapid-Fire Electromagnetic Rail Launcher . . . Y. Zhang, J. Lu, S. Tan, B. Li, H. Wu, and Y. Jiang
Analysis of the Factors Influencing the Dynamic Response of Electromagnetic Rail Launcher . . . . . . . . . . . . P. Du, J. Lu, J. Feng, X. Li, and K. Li
Investigation of Single-Stage Double-Layer Saddle Sextupole Field Electromagnetic Launcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Yan, K. Luo, L. Liang, G. Fan, H. Deng, and Y. Wang
Dynamic Response of Electromagnetic Rail Launcher Due to Projectile Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. Du, J. Lu, and K. Li
Dynamic Response of Interior Ballistic Process and Rail Stress in Electromagnetic Rail Launcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Zhang, J. Lu, S. Tan, B. Li, and Y. Jiang
Comparison Between Electric Excitation and Permanent Magnet Excitation in Brushless Pulsed Alternator System . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Cheng, C. Kan, and X. Wang
Design and Optimization of Delphi-Based Electromagnetic Coilgun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Citak, Y. Ege, and M. Coramik
Research Progress of Electromagnetic Launch Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. Ma, J. Lu, and Y. Liu
Study on Synchronization of Air-Core Compensated Pulsed Alternator Pairs . . . . . . . . . . . . . . . . . . S. Wu, D. Xing, S. Cui, L. Song, and W. Zhao
A Design Method for Linear Motion Servocontrol System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Zhentian, W. Guangsen, and Z. Liang
Research on Driving Circuit Improvement of Coilgun . . . . . . . . . . . . . . . . . Z. Yadong, G. Yujia, X. Min, B. Quanshun, N. Xiaobo, and L. Xiaolong
An Initial Survey of the Life of Rail for Electromagnetic Launch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Lu, X. Wu, S. Tan, Y. Zhang, and B. Li
Simulation of the Winding Angles' Influence on the Dynamic Strength and Stiffness of Filament Wound Composite Barrel for Railgun . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Yin, B. Li, and H. Xiao
Simulation and Analysis of the Railgun Muzzle Flow Field Considering the Arc Plasma . . . . . . . . . Y. Gao, H. Xiao, Y. Ni, Y. Xu, G. Wan, and B. Li
Stability Analysis of Hydrodynamic Lubrication of a Liquid Conducting Film at Rail–Armature Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Yao, L. Chen, S. Xia, J. He, C. Li, and Y. Xiong
Analysis of Hydrodynamic Lubrication Considering the Self-Acceleration of a Liquid Conducting Film at Rail-Armature Interface . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Yao, S. Xia, L. Chen, J. He, Y. Xiong, and C. Zhang

Simulations on Current Distribution in Railgun Under Imperfect Contact Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Li, S. Xia, L. Chen, J. H. Y. Xiong, C. Zhang, and J. Yao
A Closed-Loop Velocity Control System for Electromagnetic Railguns . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Chang, X. Yu, X. Liu, Z. Li, and H. He
The Ringer as an Inductive Power Source for a Reluctance Accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. L. Rivas-Camacho, M. Ponce-Silva, and V. H. Olivares-Peregrino
The Study of Hypervelocity Gouging Based on the Material Point Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Jingjing
Analysis and Test Efficiency of a High-Power Pulsed Power Supply Based on HIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Liu, K. Yu, and X. Xie
The Effect of Current and Speed on Melt Erosion at Rail-Armature Contact in Railgun . . . . . . . . . . . . . . . J. Yao, L. Chen, S. Xia, J. He, and C. Li
Flux Characteristics Analysis of a Single-Phase Tubular Permanent Magnet Linear Motor Based on 3-D Magnetic Equivalent Circuit . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Chen, Z. Li, and W. Yan
Flux Characteristics Analysis of a Single-Phase Tubular Switched Reluctance Linear Launcher . . . . . . . . . . . . . . . . . . H. Chen, W. Yan, and Z. Li
Iron Loss Analysis of Double-Sided Linear Switched Reluctance Launcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Chen, W. Yan, and K. Wang
A Transverse Flux Single-Phase Tubular-Switched Reluctance Linear Launcher With Eight-Pole Structure . . . . . . H. Chen, R. Nie, and H. Wang
Numerical Analysis on the Transient Inductance Gradient of the Resistive Overlay Rail on the Sliding Electrical Contact . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. An, B. Lee, Y. Bae, Y.-H. Lee, and S.-H. Kim
Design of a Recoil System for a Railgun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y.-H. Lee, K.-S. Yang, S. An, S.-H. Kim, B. Lee, Y. Bae, and S. Choi
Simulations on Saddle Armature With Concave Arc Surface in Small Caliber Railgun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Li, L. Chen, S. Xia, J. He, C. Zhang, Y. Xiong, and J. Yao
A Novel Critical Analysis Method of Homopolar Inductor Alternator for Preliminary Design in Capacitor Charge Power Supply . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Yu, J. Yao, X. Xie, and P. Tang
Study of Operation Principle of a Novel Brushless Self-Excited Air-Core Compensated Pulsed Alternator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Ye, W. Li, F. Xiong, X. Liang, and Z. Zhu
Analysis and Design of Ironless Toroidal Winding of Tubular Linear Voice Coil Motor for Minimum Copper Loss . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Luo, J. Sun, Y. Liao, and S. Xu
Study of a Novel High-Speed Compensated Pulsed Alternator With Multistage Stator Cores . . . . . . . . . . . . J. Yang, C. Ye, X. Liang, and F. Xiong
Temperature Measurement of Electromagnetic Launcher Rails Based on FBG . . . . . . . . . . . . . . . . . . . . . . . X. Wu, J. Lu, G. Wang, and Y. Zhang
Mechanical Strength Analysis of Pulsed Alternator Air-Core Rotor . . . . . . . . . . . . . . . . . . . . . . . . . . S. Wu, X. Huang, L. He, S. Cui, and W. Zhao
Current Sharing Analysis of Coil for Electromagnetic Launching . . . . . . . . . . . . . . . . . . S. Guan, D. Wang, X. Guan, D. Guo, S. Wang, and B. Liu
Phase Division and Critical Point Definition of Electromagnetic Railgun Sliding Contact State . . . . . . . . . . S. Li, J. Li, S. Xia, Q. Zhang, and P. Liu
Study on the Lumped Evaluation Model of Sliding Electrical Contact Performance of Railgun . . . . . . . S. Li, X. Wang, S. Zhang, L. Jin, and P. Liu
Feasibility Analysis of a Multidisk Axial Flux Compensated Pulsed Alternator . . . . . . . . . . . . . . . . . . . C. Ye, X. Liang, J. Yang, Y. Xiang, and Y. Li
Study on the Best Trigger Position of Multistage Induction Coil Launcher . . . . . . . . . . . . . . . . . . . X. Guan, S. Wang, S. Guan, D. Guo, and B. Liu
Research on Segmentation Evaluation Model of Sliding Electrical Contact Performance of Electromagnetic Railgun . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Li, J. Li, X. Wang, Q. Zhang, and P. Liu
Multiobjective Optimization Design of Single-Phase Tubular Switched Reluctance Linear Launcher . . . . . . . . . . . . . H. Chen, Y. Zhan, and R. Nie
Development and Experimental Results of a Three-Stage Induction Coilgun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M.-G. Song, Y. Lee, H. M. Kim, D.-V. Le, B.-S. Go, M. Park, and I.-K. Yu
Research on the Compensation Matching Design and Output Performance for Two-Axis-Compensated Compulsators . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. Zhao, X. Wang, S. Wu, S. Cui, C. Gerada, and H. Yan
Design, Fabrication, and Analysis of a Coil Assembly for a Multistage Induction-Type Coilgun System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B.-S. Go, D.-V. Le, M.-G. Song, M. Park, and I.-K. Yu
Development of a Capacitor Bank-Based Pulsed Power Supply Module for Electromagnetic Induction Coilguns . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D.-V. Le, B.-S. Go, M.-G. Song, M. Park, and I.-K. Yu
Design and Analysis of Dual-Electric-Excitation Hybrid Excitation Pulsed Alternator . . . . . . . . . . . . . . . . . . . . . S. Wu, S. Wu, S. Cui, and W. Zhao
A Novel Measurement Method of Solid Armature’s In-Bore Motion State Using B-Dot Probes for Rail Gun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Zeng, J. Lu, L. Cheng, and Y. Zheng
Multishot Damage of Insulator in a Medium-Caliber and High Linear Current Density Launcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. Zhao, R. Xu, Y. Kong, W. Yuan, and P. Yan
Multiobjective Optimization Design of Tubular Permanent Magnet Linear Launcher . . . . . . . . . . . . . . . . . . . H. Chen, Y. Zhan, R. Nie, and S. Zhao
Characterization of Ultracapacitors for Transient Load Applications. . . . . . . . . . . . . C. N. Nybeck, D. A. Dodson, D. A. Wetz, Jr., and J. M. Heinzel
Analysis of Switching Transient Process in Hybrid Energy Storage System . . . . . . . . . . . . . . . . . Y. Liu, J. Lu, X. Long, J. Wei, R. Zhou, and Y. Wu
Flux Characteristics Analysis of a Single-Phase Tubular Switched Reluctance Linear Launcher Based on 3-D Magnetic Equivalent Circuit . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Chen, Z. Li, W. Yan, and R. Nie
Mathematical Analysis of the Effects of Friction and Preacceleration on the Efficiency of Railguns . . . . . . . . . . . . . . V. Sung and W. G. Odendaal
The Effect of Changing Launch Package Mass on the Electromechanical Conversion Efficiency of Railguns . . . . . . V. Sung and W. G. Odendaal
Eddy Current Losses Analysis and Optimization Design of Litz-Wire Windings for Air-Core Compulsators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. Zhao, X. Wang, S. Wu, S. Cui, C. Gerada, and H. Yan
A Novel Tubular Switched Reluctance Linear Launcher With a Module Stator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Chen, R. Nie, and W. Zhao
Behavior of a Railgun Launch Package at the Muzzle and During Sabot Discard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Reck, S. Hundertmark, D. Simicic, R. Hruschka, B. Sauerwein, F. Leopold, and M. Schneider
Inductive Pulsed Power Supply for a Railgun Artillery System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O. Liebfried, S. Hundertmark, and P. Frings
Investigation of Rail Deformation and Stress Wave Propagation in the ISL-NGL60 Railgun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Reck, S. Hundertmark, G. Vincent, F. Schubert, and M. Schneider

 

PART IV OF FOUR PARTS


REGULAR PAPERS
Microwave Generation and Microwave-Plasma Interaction
A Frequency-Tunable V -Band Radial Relativistic Backward-Wave Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F. Yang and X. Zhang
Design and Fabrication of Plasma Yagi–Uda Array Antenna With Beamforming . . . . . . . . . . . . . . . . . . . . . . . F. S. M. Armaki and S. A. M. Armaki
The Effect of Degenerate Plasma on the Frequency Spectra of Slow Waves in Helix Traveling-Wave Tube . . . . . . . . . . . . M. Nejati and L. Rajaei
Design of Quasi-Optical Mode Converter for 170-GHz TE32,9-Mode High-Power Gyrotron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Zhao, Q. Xue, Y. Wang, X. Wang, S. Zhang, G. Liu, J. Feng, and L. Zhang
Effective Transmission Method With Adaptive Nonstationary Channel Equalization for Hypersonic Reentry Communications . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Shi, B. Yao, L. Zhao, C. Wang, H. Wei, and Y. Liui

Charged Particle Beams and Sources
Relativistic Charged-Particle Beam Space-Charge Limited Current in Finite Length Coaxial Drift Tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Yatsenko, G. V. Sotnikov, S. Portillo, and K. Ilyenko
Plasma Platform to Investigate Error Structure in the Electronic Components. . . . M. V. Roshan, H. Sadeghi, S. Fazelpour, S. Lee, and S. L. Yap

High Energy Density Plasmas and Their Interactions
Characteristics of Ar K- and L-Shell Radiations in the Divergent Gas-Puff Z-Pinch and the Application to Contact Photography . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Takasugi and M. Nishio

Industrial, Commercial, and Medical Applications of Plasmas
Inactivation of Bacillus Subtilis in Water by Direct and Indirect Nonthermal Plasma Treatments . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. G. Rodríguez-Méndez, A.N. Hernández-Arias, R. López-Callejas, A. Mercado-Cabrera,
      B. Jaramillo-Sierra,    R. Peña-Eguiluz,    R. Valencia-Alvarado,    A. E. Muñoz-Castro,    T. Falcón-Bárcenas,    and    D. Alcántara-Díaz

A Convenient Method to Realize Large-Area APGD for Wool Surface Modification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Hu, J. Yang, C. Feng, C. Jin, W. Wang, L. Zhuge, and X. Wu
Feasibility of Artificial Neural Networks and Fuzzy Logic Models for Prediction of NOX Concentrations in Nonthermal Plasma-Treated Diesel
     Exhaust
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Allamsetty and S. Mohapatro
Multimethods and Underlying Mechanism for Realizing Uniform Discharge From Patterned Structures by Varying Controlling Parameters . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Zhang, P. Li, J. Ouyang, and B. Li
Surface Modification of Carbon Steel With Plasma Chemical Vapor Deposition for Enhancing Corrosion Resistance in CO2/Brine . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Ma, H. Bai, B. Yang, Q. Yu, and Q. Zhang

Plasma Diagnostics
Forward Scattering Measurement Based on Terahertz Microwave Interferometer on KTX Reversed Field Pinch . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. Mao, J. Xie, S. Zhang, L. Jiang, T. Lan, H. Li, A. Liu, G. Zhuang, W. Ding, and W. Liu
Investigation of Plasma Parameters During Mode Transition in Magnetic-Pole-Enhanced-Inductively Coupled Neon Plasma . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. I. Khattak, M. Shafiq, and A. W. Khan
Measurement of Total Energy of Pulsed Electron Beam From a Plasma Focus Device Using Dosimetry of Bremsstrahlung X-Ray . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Radaie and B. S. Bidabadi
Energetics of Noble Gas Dielectric Barrier Discharges: Novel Results Related to Electrode Areas and Dielectric Materials . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Watson, B. Nisol, H. Gagnon, M. Archambault-Caron, F. Sirois, and M. R. Wertheimer

Pulsed Power Science and Technology
A Low-Impedance Transmission Line Transformer Based on the Multicore Coaxial Transmission Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Pan, J. Yang, X.-B. Cheng, and R. Chen
A Compact Pulse Power System for Capillary Discharge Plasma-Based Soft X-Ray Laser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . S. Nigam, S. Barnwal, A. Kodakkat, M. L. Sharma, Y. B. S. R. Prasad, P. K. Tripathi, J. A. Chakera, and P. A. Naik
Impedance Matrix and Parameters Measurement Research for Long Primary Double-Sided Linear Induction Motor . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Sun, J. Gao, W. Ma, J. Lu, and J. Xu
A Plasma Switch Induced by Electroexplosion of p-n Junction for Mini Exploding Foil Initiator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Xu, P. Zhu, W. Zhang, R. Shen, and Y. Ye
A Reopened Crowbar Protection for Increasing the Resiliency of the Vacuum Tube High-Voltage DC Power Supply Against the Vacuum Arc . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Pouresmaeil and S. Kaboli
Influence of Contacting Schemes on Electromagnetic Force and Current Density Distribution in Armature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Liu, W. Guo, T. Zhang, Z. Su, W. Fan, and H. Zhang
A Modular Step-Up High-Voltage Bipolar Pulse Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Gholamalitabar, J. Adabi, and M. Rezanejad

Arcs & MHD
Study of the Arc Interruption Performance of CO2 Gas in High-Voltage Circuit Breaker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Guo, S. Liu, Y. Pu, B. Zhang, X. Li, F. Tang, Q. Lv, and S. Jia
Study of High-Flow Argon Through Cascaded Arc for Use as a Gas Target Isolato . . . . . . . . . . . . . . . . . . . . . . . . . . A. LaJoie, J. Gao, and F. Marti
Theoretical Basis and Experimental Validation of the Breakdown Induced by Rupture of Dielectric Layer Model . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E. Spada, A. De Lorenzi, N. Pilan, and V. Antoni
Numerical Study of the Current Constriction in a Vacuum Arc at Large Contact Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Tezenas du Montcel, P. Chapelle, C. Creusot, and A. Jardy

Fusion Science and Technology
Development of Real-Time Controller-Based Data Acquisition System for Indian Test Facility of ITER DNB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Tyagi, R. Yadav, K. Patel, M. Bandyopadhay, M. J. Singh, A. Chakraborty, and N. P. Gajjar

Technical Note
Down-Sizing of Iron Powders via Evaporation in an Atmospheric Microwave Plasma Flame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. H. Shin, S. M. Chun, G. W. Yang, and Y. C. Hong


Home | Contact & Support | Accessibility | Nondiscrimination Policy | Feedback | Privacy and Opting Out of Cookies

© Copyright 2019 IEEE - All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions. A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.

If you have questions about this mailing, or need assistance, please direct your inquiries to the IEEE Contact Center. Replies to this message do not reach IEEE.

If you would like to be removed from this email distribution, please [Response: Unsubscribe from List]. If you have unsubscribed in error, please [Response: Subscribe to List].