T-NPS Header
T-PS Home  |  Editorial Board  |  T-PS in IEEE Xplore  |   Early Access  |  Manuscript Submission
APRIL 2019 FEATURE ARTICLES - THESE ARE OPEN ACCESS FOR A LIMITED TIME
We are pleased to announce that the 2017 Impact Factor for T-PS has increased by 20% and now stands at 1.253![Response: Read Receipt]

Robust Photonic Bandgaps in Quasiperiodic and Random Extrinsic Magnetized Plasma

by Chittaranjan Nayak, Carlos H. Costa, and Alireza Aghajamali
article one image
In this paper, we have employed the transfer-matrix method to study theoretically the light waves propagation in extrinsic magnetized plasma multilayer, which is composed of a bulk plasma system influenced by the presence of spatially varying external magnetic field, which leads to a photonic bandgap device. The multilayered structures are arranged in periodic, quasiperiodic (Fibonacci, Octonacci, Thue–Morse, and double period), and Gaussian random fashions. The numerical results show the emergence of two main photonic bandgaps: the first gap for low frequencies and the second one for higher frequencies. We investigate the robust nature of the higher frequencies bandgap since it shows up to be invariant to different values of applied external magnetic fields and electron density as well as changes in the position and thickness of the layers introduced by the quasiperiodic and the Gaussian random sequences, respectively. The most surprising result is that this desired robust bandgap is broadening without any intermediate resonant peaks while the randomness in the layer thickness is introduced, which had not been observed in previous works about this same system. more...
-----------------------

Fully 3-D Numerical Investigation of Phenomena Occurring in Marine Magnetohydrodynamic Thrusters

by Mortaza Haghparast, Mohammad Reza Alizadeh Pahlavani, and Diako Azizi
article two image
A magnetohydrodynamic (MHD) thruster is a type of electric motor which does not have mechanical moving parts and directly converts electrical energy into mechanical energy. In this paper, a multiphysics numerical simulation has been performed to investigate the phenomena occurred in the channel of marine MHD thrusters. In this simulation, all electric, magnetic, and fluid flow fields have been considered 3-D. For this purpose, a marine MHD thruster model with saddle-shaped coils is selected, and its dimensions are determined. Then, this thruster is simulated numerically, and its electromagnetic and fluid flow parameters are studied. In this simulation, the effects of seawater electrolysis and end loss are taken into account. An experimental setup is established to validate the results obtained from the numerical simulation. The results reveal that the nonuniformities of the electric and magnetic fields along the channel have a great impact on the performance of the thruster. Unlike the results obtained in the previous studies, it is shown that the velocity near the electrodes is higher than that near the sidewalls arisen from the higher electromagnetic force close to the electrodes. more...
-----------------------

Experimental Investigation of Drawing Vacuum Arc Under Different TMF Contacts in Vacuum Interrupter

by Weixin Shi, Lijun Wang, Renjie Lin, Yuan Wang, Jinwei Ma, and Shenli Jia
article three image
Vacuum interrupter is widely used in the medium-voltage power system. Controlling the arc by the magnetic field is an effective method to improve the breaking capacity. The transverse magnetic field (TMF) forces the constricted arc to rotate to reduce local overheating. In this paper, three kinds of TMF contacts, which are Swastika-type contact, cup-shaped contact, and double-TMF contact that combines Swastika-type and cup-shaped contacts coaxially, are investigated in a demountable vacuum chamber with a high-speed camera. The arc voltage and current are also recorded. The experiments were conducted with circuit currents from 5 to 20 kA (root mean square) with a frequency of 50 Hz. There are four current levels in the experiment, which are 5, 10, 15, and 20 kA, and at least three tests are taken for each current level. The results showed that under low current (I = 10 kA), the arc of the three TMF contacts did not rotate. Under high current (I = 20 kA), it was observed that the arc of Swastika-type and double-TMF contacts rotated in the gap. more...
-----------------------

Recurrence Plots for Dynamic Analysis of Type-I ELMs at JET With a Carbon Wall

by Barbara Cannas, Alessandra Fanni, Andrea Murari, Fabio Pisano, and JET Contributors
article three image
In this paper, the dynamic characteristics of type-I edge-localized modes (ELM) time series from the JET tokamak, the world’s largest magnetic confinement plasma physics experiment, have been investigated through recurrence plots (RPs). The analysis has been focused on RPs of pedestal temperature, line averaged electron density, and outer divertor Dα time series during experiments with a carbon wall. The analysis of RPS shows the patterns similar to those characteristics of signals exhibiting type-2 intermittency, in particular, a characteristic kite-like shape; this gives useful hints to model the temperature signal as well as the Dα radiation time series, with simple nonlinear maps capturing the nearly periodic behavior of type-I ELMs. more...
-----------------------
header

A PUBLICATION OF THE IEEE NUCLEAR AND PLASMA SCIENCES SOCIETY

APRIL 2019  |  VOLUME 47  |  NUMBER 4  |  ITPSBD  |  (ISSN 0093-3813)

REGULAR PAPERS
Basic Processes in Fully and Partially Ionized Plasmas
Numerical Investigation of Atomic Oxygen Production and Influence of Power Deposition for a Helium–Oxygen Atmospheric-Pressure
     Plasma
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Harzheim, Á. Ochoa Brezmes, and C. Breitkopf
The Plasma and Sheath Asymptotic Solutions Along With the Full Solution of the Plasma Equations Including the Ion Isothermal Flow . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Khoram
Two-Electron Pseudodot System With Laser Effect in Plasmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. K. Bahar and A. Soylu

Microwave Generation and Microwave-Plasma Interaction
Robust Photonic Bandgaps in Quasiperiodic and Random Extrinsic Magnetized Plasma . . . . . . . . . . . C. Nayak, C. H. Costa, and A. Aghajamali
KlyC: 1.5-D Large-Signal Simulation Code for Klystrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Cai and I. Syratchev
Analysis of the Field Shape and Mode Competition for the Higher Order Modes in the Oversized Multigap Resonant Cavity With Coplanar
      Beams
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Lü, C. Zhang, G. Yu, C. Zhao, E. Tan, and A. Lü
A Microwave-Induced Room-Temperature Atmospheric-Pressure Plasma Jet . . . . . . . . . . . . . . . . Z. Liu, W. Zhang, J. Tao, L. Wu, and K. Huang
Design and Performance Analyses of High-Efficiency X-Band Relativistic Backward-Wave Oscillator Using an Improved Resonant Reflector
      Under Low Guiding Magnetic Field
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. A. Ansari and M. Thottappan

Charged Particle Beams and Sources
Design of a Hollow-Beam Electron Optics System With Control Focus Electrodes . . . . . . . . . . . T. Ma, D. Zhao, Z. Zhang, Y. Xiang, and W. Wang

Plasma Diagnostics
Surface Recovery of the CXRS First Mirror of EAST . . . . . . . . . . . . . . . . . . . . . . . . . R. Yan, J. Peng, R. Ding, Y. Li, X. Yin, B. Wang, and J. Chen
Analysis of Instability Phenomena at Current Interruption in Vacuum Arc Discharge Compared With Silver or Copper Electrode . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. Kamata, N. Mungkung, H. Kinoshita, and T. Yuji
Electromagnetic Inverse Profiling for Plasma Diagnostics via Sparse Recovery Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Di Donato, A. F. Morabito, G. Torrisi, T. Isernia, and G. Sorbello
Characterization of Atmospheric-Pressure Helium–Oxygen Dual-Frequency Glow Discharges Using Optical Emission Spectroscopy . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Huang, S. Wang, J. Wu, L. Dai, L. Li, Y. Guo, J. Zhang, and J. Shi

Pulsed Power Science and Technology
Microsecond Overshoot Characteristics of PSM High-Voltage Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Wang, J. Zhang, P. Fu, Y. Huang, R. Guan, F. Guo, H. Sun, and Y. Zhou
Leakage Inductance Calculation of the Transformers With Disordered Windings . . . . . . . . . . . . . . . . . . S. Mohsenzade, M. Aghaei, and S. Kaboli
Construction of a Pulsed Magnetic Field System for Regulating Strongly Dissipative Plasmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. Ling, E. Peng, X. Ma, H. Li, Z. Yu, and F. Xu

Arcs & MHD
Fully 3-D Numerical Investigation of Phenomena Occurring in Marine Magnetohydrodynamic Thrusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Haghparast, M. R. A. Pahlavani, and D. Azizi
Experimental Investigation of Drawing Vacuum Arc Under Different TMF Contacts in Vacuum Interrupter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. Shi, L. Wang, R. Lin, Y. Wang, J. Ma, and S. Jia
Evaluation of Arc Quenching Ability for a Gas by Combining 1-D Hydrokinetic Modeling and Boltzmann Equation Analysis . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Zhong, Y. Cressault, and P. Teulet
Atomic Emission Spectroscopy of Microarc Discharge in Sea Water for On-Site Detection of Metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. Gamaleev, H. Furuta, and A. Hatta
Spectroscopic and Photographic Evaluation of the Near-Surface Layer Produced by Arc-Induced Polymer Ablation . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Pettersson, M. Becerra, S. Franke, and S. Gortschakow

Fusion Science and Technology
Mathematic Model of Neutron Dose Rates in the EAST Hall . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Liu, L. Hu, G. Zhong, S. Liu, R. Zhou, and K. Li
Analysis of Output Voltage Ripple of AGPS for CFETR N-NBI Prototype . . . . . . . . . . . . . X. Zhang, M. Zhang, S. Ma, S. Wang, Y. Pan, and K. Yu
Recurrence Plots for Dynamic Analysis of Type-I ELMs at JET With a Carbon Wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Cannas, A. Fanni, A. Murari, F. Pisano, and Jet Contributors
Design of Real-Time Control in Poloidal Field Power Supply Based on Finite-State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. He, L. Huang, G. Gao, G. Wang, Z. Wang, and X. Chen


Home | Contact & Support | Accessibility | Nondiscrimination Policy | Feedback | Privacy and Opting Out of Cookies

© Copyright 2019 IEEE - All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions. A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.

If you have questions about this mailing, or need assistance, please direct your inquiries to the IEEE Contact Center. Replies to this message do not reach IEEE.

If you would like to be removed from this email distribution, please Response: Unsubscribe from List]. If you have unsubscribed in error, please [Response: Subscribe to List].