T-NPS Header
T-PS Home  |  Editorial Board  |  T-PS in IEEE Xplore  |   Early Access  |  Manuscript Submission
MARCH 2019 FEATURE ARTICLES - THESE ARE OPEN ACCESS FOR A LIMITED TIME
We are pleased to announce that the 2017 Impact Factor for T-PS has increased by 20% and now stands at 1.253![Response: Read Receipt]

Sensitivity of Thomson Scattering Measurements on Electron Distribution Modeling in Low-Density RFP Plasmas

by A. Fassina, P. Bílkova, P. Bohm, and P. Franz
article one image
A numerical method which relies on Thomson scattering data for the identification and analysis of electron distributions is presented and discussed; the method is developed within the framework of Bayes probability theory. Use of this method on Reversed Field eXperiment (RFX)-mod low-density data supports the proposition that suprathermal tails cause systematic asymmetries in electron temperature profiles. In the limits of signal and spectral resolution of the diagnostic, a semiquantitative analysis is carried on; the presence of nonthermal (NT) populations is found to be consistent with runaway/slideaway plasma conditions. In low-density discharges NT e− presence is compatible with the presence of kinetic dynamo and can contribute to configuration sustainment. more...
-----------------------

Propulsive Force in Electric Solar Sails for Missions in the Heliosphere

by Antonio Sanchez-Torres
article two image
An electric solar sail (E-sail) is a recent propulsion technology concept capable of reaching the edge of the Heliosphere. An E-sail consists of a set of bare tethers at high positive/negative bias capable of deflecting solar wind protons to produce thrust. The propulsive force calculation for a single tether was focused on outer planet missions, considering the characteristic plasma ambient at 1 astronomical unit. However, both ion and electron temperature and plasma density cover a wide range of values within the Heliosphere. Propulsive forces are determined here for the solar wind plasma within the entire Heliosphere. Results show that propulsive forces increase with ion temperature, whereas decrease with electron temperature. In addition, propulsive forces do increase with plasma density despite the sheath decreases. more...
-----------------------

Emergence of Novel Multipactor Modes Under Standing Wave Conditions in a Coaxial Line With an RF Window

by Thomas W. Hall, Prabhakar Bandaru, and Daniel Rees
article three image
The multipactor (MP) phenomenon can generate exponentially increasing electron populations in RF vacuum systems, leading to components becoming damaged. This paper uses numerical methods to analyze an RF vacuum window in a coaxial line under various standing wave conditions. Our methods are first benchmarked against the analytic and experimental results for the traveling wave and the numerical results for standing waves that were found in previous work. Second, the effect of standing waves on electron motion in the axial direction is discussed and related to electron trajectories in the presence of an RF window. It is found that standing waves with the magnetic maximum located behind the RF window lead to window collisions that can affect MP depending on the power, frequency, and conductor radii. For a low number of window collisions, MP was highly predictable by earlier work, but as the percentage of collisions occurring on the window surpassed approximately 50%, a novel mode of MP emerged to dominate the phenomenon. more...
-----------------------
header

A PUBLICATION OF THE IEEE NUCLEAR AND PLASMA SCIENCES SOCIETY

MARCH 2019  |  VOLUME 47  |  NUMBER 3  |  ITPSBD  |  (ISSN 0093-3813)

REGULAR PAPERS
Basic Processes in Fully and Partially Ionized Plasmas
Effect of Background Gas Pressure on Macroparticles in Cathodic Arc Plasma Deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E. V. Romashchenko, I. O. Girka, and A. A. Bizyukov
Tunability Study of Plasma Frequency Selective Surface Based on FDTD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Ji and Y. Ma
Set of the Electron Collision Cross Sections for Methane Molecule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Gadoum and D. Benyoucef
A Study on the Primary Mode of Pulsed Positive Streamer Discharge in Water . . . . . . . . . . . . . . . . . J. S. Li, X. Q. Wen, X. H. Liu, and Y. B. Zhou
Acceleration of Macroscopic Clusters in Crossed Magnetic Fields . . . . . . . . . . . . . A. R. Karimov, S. A. Terekhov, A. E. Shikanov, and P. A. Murad

Microwave Generation and Microwave-Plasma Interaction
Emergence of Novel Multipactor Modes Under Standing Wave Conditions in a Coaxial Line With an RF Window . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. W. Hall, P. Bandaru, and D. Rees
Study of X-Band Microwave Attenuation by Array of Filamentary Air Plasma . . . . . . . . . . . . . . . . . . . . Y. Bo, S. Elliott, Q. Zhao, and S. B. Leonov

Charged Particle Beams and Sources
Numerical Simulation of Characteristics of Uranium and Fission Products Ion Fluxes in the Process of Plasma Separation . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Samokhin, A. Gavrikov, S. Kuzmichev, R. Timirkhanov, N. Vorona, V. Smirnov, and R. Usmanov

Industrial, Commercial, and Medical Applications of Plasmas
An Implementation of Complete Flux Scheme in 1-D Fluid Model for the Pulsed DBD at Atmospheric Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Qi, Z. Tan, Q. Huang, and X. Wang
Comparison of Distinct Discharge Modes for Ozone Production in a Novel DBD Configuration With Three Flat Electrodes . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E. A. Firoozabadi and S. M. H. Hosseini
Conversion of Carbon Disulfide in Pulsed Corona Discharge Plasma . . . . . . . . . . . . . . . . . . . . . . . . D. L. Kuznetsov, I. E. Filatov, and V. V. Uvarin
Atmospheric Pressure DBD Low-Temperature Plasma Reactor for the Treatment of Sugarcane Bagasse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. Spyrou and J. de Amorim
A Numerical Investigation on the Effects of Water Vapor on Electron Energy and OH Production in Atmospheric-Pressure
     He/H2O and Ar/H2O Plasma Jets
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Liu, Z. Tan, X. Chen, X. Li, and X. Wang

Plasma Diagnostics
Sensitivity of Thomson Scattering Measurements on Electron Distribution Modeling in Low-Density RFP Plasmas . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Fassina, P. Bílkova, P. Bohm, and P. Franz
On Waveguide’s Critical Corona Breakdown Thresholds Dependence on the Collision Frequency Between Electrons and Air . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. Medina, C. Couder-Castañeda, J. J. Hernández-Gómez, and D. Saucedo-Jiménez
Signal Intensity Enhancement by Cavity Confinement of Laser-Produced Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. Ahmed, M. Akthar, A. Jabbar, Z. A. Umar, N. Ahmed, J. Iqbal, and M. A. Baig

Pulsed Power Science and Technology
A Microcontroller-Based Modular Pulsed H.V. Power Supply: Design, Implementation, and Tests on DBD-Based Plasmas . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Koliadimas, D. Apostolopoulos, P. Svarnas, K. Sklias, D. Athanasopoulos, and E. D. Mitronikas
Solid-State High-Voltage Pulse Generator for Low Temperature Plasma Ion Mobility Spectrometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Ramezani, A. A. Shayegani Akmal, and K. Niayesh
Design of Compact Accelerator Module of the Induction Synchrotron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Huang and W. Wang

Arcs & MHD
Paschen’s Law in Extreme Pressure and Temperature Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Galli, H. Hamrita, C. Jammes, M. J. Kirkpatrick, E. Odic, P. Dessante, and P. Molinié
Experimental and Simulation Research on Influence of Axial Magnetic Field Components on Vacuum Arc Between Transverse
     Magnetic Field Contacts
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Liu, S. Xiu, T. Wang, L. Zhao, Y. Zhang, and R. Li

Space Plasmas
Propulsive Force in Electric Solar Sails for Missions in the Heliosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Sanchez-Torres

Fusion Science and Technology
Protection Against High-Energy Breakdowns in Neutral Beam Systems for Future Fusion Reactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. M. Ahmed, H. P. L. de Esch, and A. Simonin

Electromagnetic Launch Science and Technology
Analysis of the Melt Erosion Patterns at Rail-Armature Contact of Rail Launcher in Current Range of 10–20 kA/mm . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Yao, S. Xia, L. Chen, and J. He
Design and Development of 4-MJ Capacitor Bank-Based Pulsed Power System for Electromagnetic Launcher . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . V. P. Kumar, S. Swarup, S. Rajput, G. Kumar, A. P. Nomula, K. B. Jadhav, S. Y. Taral, K. J. Daniel, and S. Datar

Technical Note

One-Pot Synthesis of Copper Nanoparticles Using Underwater Plasma . . . . . . . . . . . . . . J. Y. Huh, K. Kim, S. H. Ma, E. H. Choi, and Y. C. Hong


Home | Contact & Support | Accessibility | Nondiscrimination Policy | Feedback | Privacy and Opting Out of Cookies

© Copyright 2019 IEEE – All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions. A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.

If you have questions about this mailing, or need assistance, please direct your inquiries to the IEEE Contact Center. Replies to this message do not reach IEEE.

If you would like to be removed from this email distribution, please Response: Unsubscribe from List]. If you have unsubscribed in error, please [Response: Subscribe to List].