T-PS Header
T-NS Home  |   Editorial Board  |   T-NS in IEEE Xplore  |    Early Access  |   Manuscript Submission
JANUARY 2019 FEATURE ARTICLES - THESE ARE OPEN ACCESS FOR A LIMITED TIME

A Brief History of Space Climatology: From the Big Bang to the Presents

by Michael Xapsos


Review of space climatology is presented with a view toward spacecraft electronics applications. The origins and abundances of space radiations are discussed and related to their potential effects. Significant historical developments are summarized leading to the inception of space climatology and into the space era. Energetic particle radiation properties and models of galactic cosmic rays, solar energetic and geomagnetic trapped particles are described. This includes current radiation effects issues that models face today. more...
-----------------------

Directional Dependence of Co-60 Irradiation on the Total Dose Response of Flash Memories

by Matthew J. Gadlage, David I. Bruce, James D. Ingalls, Dobrin P. Bossev, Matthew McKinney, and Matthew J. Kay

The amount of data corruption in a wide assortment of flash memories observed during Co-60 total dose tests is shown to have a strong dependence on the direction in which the Co-60 irradiation is performed. The effect is due to dose enhancement from the metal layers above the floating gate. The dose enhancement effect is shown to become greater as technology node scales and is even observed in on a state-of-the-art 3-D NAND flash memory. The radiation hardness assurance implications of this dose enhancement effect are significant and are discussed in detail. more...
-----------------------

Optimizing Optical Parameters to Facilitate Correlation of Laser- and Heavy-Ion-Induced Single-Event Transients in SiGe HBTs

by Adrian Ildefonso, Zachary E. Fleetwood, George N. Tzintzarov, Joel M. Hales, Delgermaa Nergui, Milad Frounchi, Ani Khachatrian, Stephen P. Buchner, Dale McMorrow, Jeffrey H. Warner, Joseph Harms, Anna Erickson, Kay Voss, Véronique Ferlet-Cavrois, and John D. Cressle

An approach for determining the optimal laser parameters (i.e., pulse energy, focused spot size, wavelength, and pulse duration) for correlating single-event transients induced via two-photon absorption (TPA) and heavy ions is presented. The approach focuses on identification and extraction of waveform characteristics, or “features,” and minimizing the error between features produced by TPA and ions. Modifying optical parameters can directly impact the waveform features of the TPA-induced transients. Consequently, optimal laser parameters that minimize the error between features extracted for laser- and ion-induced waveforms can be determined. In this paper, the laser pulse energy and spot size were varied, while maintaining a fixed pulse duration and wavelength, and the resulting transients were compared to ion-induced transients. When the optimized optical parameters are used, excellent agreement was achieved between laser- and ion-induced transient waveforms in a silicon-germanium heterojunction bipolar transistor (SiGe HBT). In addition, a one-to-one correlation between heavy-ion linear energy transfer (LET) and laser pulse energy was obtained for a particular spot size ( ω0=1.89μm (HW 1/e2 )). These results show that a correlation between LET and pulse energy is achievable when the remaining optical parameters are selected appropriately. Although the results presented are for SiGe HBTs, the generality of the approach should allow it to be extended to other semiconductor platforms. more...
-----------------------

Compact and Effective Detector of the Fast Neutrons on a Base of Ce-doped Gd3Al2Ga3O12 Scintillation Crystal

by Mikhail Korjik, Kai-Thomas Brinkmann, Georgy Dosovitskiy, Valery Dormenev, Andrei Fedorov, Dmitry Kozlov, Vitaly Mechinsky, and Hans-Georg Zaunick

Gadolinium aluminum gallium garnet Gd3 Al2 Ga3 O12: Ce crystal is demonstrated to be an excellent scintillation material for detection of fast neutrons for the first time. This is achieved because the material, first, has high content of Gd, which absorbs neutrons with following prompt emission of γ -quanta, and, second, detects this radiation efficiently thanks to high stopping power and high scintillation light yield. GEANT4 modeling was used to distinguish several characteristic regions in γ -quanta pulse height spectra acquired with GAGG:Ce crystal under neutron irradiation, with energies nearly 90 and 190, and 511 keV, which have different relative intensities depending on incident neutrons kinetic energy. This was approved by measurements on Am–Be neutron source. Sensitivity of the material to neutrons from Am–Be source was compared to 6 Li-based glass, and found to be superior, depending on signal selectivity. more...
-----------------------

A PUBLICATION OF THE IEEE NUCLEAR AND PLASMA SCIENCES SOCIETY

JANUARY 2019  |  VOLUME 66  |  NUMBER 1  |  IETNAE  |  (SSN 0018-9499)
NUCLEAR AND SPACE RADIATION EFFECTS CONFERENCE (NSREC)
Kona, HI, USA, July 16–20, 2018

EDITORIAL
Conference Comments by the General Chair. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. Lacoe
Special NSREC 2018 Issue of the IEEE TRANSACTIONS ON NUCLEAR SCIENCE Comments by the Editors . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . D. M. Fleetwood, D. Brown, H. Quinn, I. Sanchez Esqueda, W. Robinson, S. Moss, V. Goiffon, and P. Paillet


LIST OF REVIEWERS
NSREC 2018 Special Issue of the IEEE TRANSACTIONS ON NUCLEAR SCIENCE List of Reviewers


AWARDS
2018 IEEE Nuclear and Space Radiation Effects Conference Awards Comments by the Chairman . . . . . . . . . . . . . . . . . . . . . . . . . S. P. Buchner
Outstanding Conference Paper Award: 2018 IEEE Nuclear and Space Radiation Effects Conference


IN MEMORIAM
Wendland Beezhold


INVITED REVIEW
A Brief History of Space Climatology: From the Big Bang to the Present . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Xapsos


RADIAITON EFFECTS IN DEVICES AND INTEGRATED CIRCUITS
Characterization and Modeling of Gigarad-TID-Induced Drain Leakage Current of 28-nm Bulk MOSFETs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C.-M. Zhang, F. Jazaeri, G. Borghello, F. Faccio, S. Mattiazzo, A. Baschirotto, and C. Enz
Total Ionizing Dose Effects in 3-D NAND Flash Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . M. Bagatin, S. Gerardin, A. Paccagnella, S. Beltrami, A. Costantino, M. Muschitiello, A. Zadeh, and V. Ferlet-Cavrois
Training a Neural Network on Analog TaOx ReRAM Devices Irradiated With Heavy Ions: Effects on Classification Accuracy Demonstrated
      With CrossSim
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. B. Jacobs-Gedrim, D. R. Hughart,
     S. Agarwal,  G. Vizkelethy,  E. S. Bielejec,  B. L. Vaandrager,  S. E. Swanson,  K. E. Knisely,  J. L. Taggart, H. J. Barnaby, and M. J. Marinella

Ionizing Radiation Effects Spectroscopy for Analysis of Total-Ionizing Dose Degradation in RF Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Patel, M. Joplin, R. C. Boggs, D. R. Reising, M. W. McCurdy, L. W. Massengill, and T. D. Loveless
Failure Thresholds in CBRAM Due to Total Ionizing Dose and Displacement Damage Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . J. L. Taggart, R. B. Jacobs-Gedrim, M. L. McLain, H. J. Barnaby, E. S. Bielejec, W. Hardy, M. J. Marinella, M. N. Kozicki, and K. Holbert
Effects of Gamma Irradiation on Magnetic Properties of Double-Interface CoFeB/MgO Multifilms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Wang, Z. Wang, K. Cao, X. Bi, Y. Zhao, Y. Zhang, and W. Zhao
Influence of Halo Implantations on the Total Ionizing Dose Response of 28-nm pMOSFETs Irradiated to Ultrahigh Doses . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Bonaldo, S. Mattiazzo, C. Enz, A. Baschirotto, A. Paccagnella, X. Jin, and S. Gerardin
Effect of Proton Radiation on Ultrawide Bandgap AlN Schottky Barrier Diodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Montes, T.-H. Yang, H. Fu, H. Chen, X. Huang, K. Fu, I. Baranowski, and Y. Zhao
Evaluation of Radiation Effects in RRAM-Based Neuromorphic Computing System for Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Ye, R. Liu, J. L. Taggart, H. J. Barnaby, and S. Yu

PHOTONIC DEVICES AND INTEGRATED CIRCUITS

Dose and Single-Event Effects on a Color CMOS Camera for Space Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Virmontois,
      J.-M. Belloir,  M. Beaumel,  A. Vriet,  N. Perrot, C. Sellier, J. Bezine, D. Gambart, D. Blain, E. Garcia-Sanchez, W. Mouallem, and A. Bardoux

Radiation Hardness Comparison of CMOS Image Sensor Technologies at High Total Ionizing Dose Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Rizzolo, V. Goiffon, F. Corbière, R. Molina, A. Chabane, S. Girard, P. Paillet, P. Magnan, A. Boukenter,
      T. Allanche,   C. Muller,   C. Monsanglant-Louvet,   M. Osmond,   H. Desjonquères,  J.-R. Macé,  P. Burnichon,  J.-P. Baudu,  and  S. Plumeri

Radiation-Induced Effects on Fiber Bragg Gratings Inscribed in Highly Birefringent Photonic Crystal Fiber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . A. Morana, T. Baghdasaryan, S. Girard, E. Marin, T. Geernaert, H. Thienpont, F. Berghmans, A. Boukenter, and Y. Ouerdane
Total Ionizing Dose Effects in 70-GHz Bandwidth Photodiodes in a SiGe Integrated Photonics Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. S. Goley, G. N. Tzintzarov, S. Zeinolabedinzadeh,
      A. Ildefonso,   K. Motoki,   R. Jiang,   E. X. Zhang,   D. M. Fleetwood,  L. Zimmermann,  M. Kaynak,  S. Lischke,  C. Mai,  and  J. D. Cressler

Comparative Study of Cryogenic Versus Room-Temperature Proton Irradiation of N-Channel CCDs and Subsequent Annealing . . . . . . . . . . . . . .
      . . . . . . . . . T. Prod’homme, P. Verhoeve, F. Lemmel, H. Smit, S. Blommaert, C. van der Luijt, I. Visser, T. Beaufort, Y. Levillain, and B. Shortt

RADIATION HARDNESS ASSURANCE
The Effect of 1–10-MeV Neutrons on the JESD89 Test Standard . . . . . . . . . . . . . . . . . . . . . . . H. Quinn, A. Watkins, L. Dominik, and C. Slayman
Directional Dependence of Co-60 Irradiation on the Total Dose Response of Flash Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. J. Gadlage, D. I. Bruce, J. D. Ingalls, D. P. Bossev, M. McKinney, and M. J. Kay
Process Variation Aware Analysis of SRAM SEU Cross Sections Using Data Retention Voltage . . . . . . . . . . . . . . . . . . D. Kobayashi, N. Hayashi,
      K. Hirose,   Y. Kakehashi,   O. Kawasaki,   T. Makino,   T. Ohshima,   D. Matsuura,  Y. Mori,  M. Kusano,  T. Narita,  S. Ishii, and K. Masukawa

Total Dose Testing Methodology for Bipolar Circuits Operating in the Jovian Radiation Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. C. Adell, S. McClure, B. R. Rax, D. Thorbourn, A. Kenna, I. Jun, W. Kim, and L. Scheick
Dose-Rate Dependence of the Total-Ionizing-Dose Response of GaN-Based HEMTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. Jiang, E. X. Zhang, M. W. McCurdy, P. Wang, H. Gong, D. Yan, R. D. Schrimpf, and D. M. Fleetwood
Impacts of Proton Radiation on Heavy-Ion-Induced Single-Event Transients in 65-nm CMOS Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Wu, S. Chen, J. Chen, and P. Huang
Methodology for Identifying Radiation Effects in Robotic Systems With Mechanical and Control Performance Variations . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. T. Howard, E. J. Barth, R. D. Schrimpf, R. A. Reed, L. C. Adams, D. Vibbert, and A. F. Witulski
Multiscale Modeling of Total Ionizing Dose Effects in Commercial-off-the-Shelf Parts in Bipolar Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . A. Privat, H. J. Barnaby, P. C. Adell, B. S. Tolleson, Y. Wang, X. Han, P. Davis, B. R. Rax, and T. E. Buchheit
Temperature-Switching During Irradiation as a Test for ELDRS in Linear Bipolar Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Li, W. Lu, Q. Guo, D. M. Fleetwood, C. He, X. Wang, X. Yu, J. Sun, M. Liu, and S. Yao

RADIATION HARDENING BY DESIGN
Strategies for Removing Common Mode Failures From TMR Designs Deployed on SRAM FPGAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. J. Cannon, A. M. Keller, H. C. Rowberry, C. A. Thurlow, A. Pérez-Celis, and M. J. Wirthlin
Selective Hardening for Neural Networks in FPGAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F. Libano, B. Wilson, J. Anderson, M. J. Wirthlin, C. Cazzaniga, C. Frost, and P. Rech
Microcontroller Compiler-Assisted Software Fault Tolerance . . . . . . . . . . . . . . . . M. Bohman, B. James, M. J. Wirthlin, H. Quinn, and J. Goeders
Using MRED to Screen Multiple-Node Charge-Collection Mitigated SOI Layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. D. Black, J. A. Dame, D. A. Black, P. E. Dodd, M. R. Shaneyfelt, J. Teifel,
      J. G. Salas, R. Steinbach, M. Davis, R. A. Reed, R. A. Weller, J. M. Trippe, K. M. Warren, A. M. Tonigan, R. D. Schrimpf, and R. S. Marquez

Best Practices for Using Electrostatic Discharge Protection Techniques for Single-Event Transient Mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . M.-K. Cho, I. Song, Z. E. Fleetwood, A. Khachatrian, J. H. Warner, S. P. Buchner, D. McMorrow, P. Paki, and J. D. Cressler
Evaluating the Impact of Repetition, Redundancy, Scrubbing, and Partitioning on 28-nm FPGA Reliability Through Neutron Testing . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O. O. Kibar, P. Mohan, P. Rech, and K. Mai

SPACE AND TERRESTRIAL RADIATION ENVIRONMENTS
Using the Galileo Solid-State Imaging Instrument as a Sensor of Jovian Energetic Electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Carlton, M. de Soria-Santacruz Pich, W. Kim, I. Jun, and K. Cahoy
Experimental Evidence of Ground Albedo Neutron Impact on Soft Error Rate for Nanoscale Devices . . . . . . . . . . . . . . . . G. Hubert and L. Artola
Correlation of Single-Board Computer Ground-Test Data and On-Orbit Upset Rates From the Gaia Mission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . D. L. Hansen, E. Ecale, R. Hillman, F. Meraz, J. Montoya, P. Paulet, E. Serpell, P. Tatry, and G. Williamson

DOSIMETR
SRAM Dosimeter for Characterizing the TRIUMF Proton and Neutron Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E. Blackmore, M. Trinczek, K. Jiang, M. Sachdev, and D. Wright
An SRAM-Based Radiation Monitor With Dynamic Voltage Control in 0.18-μm CMOS Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Prinzie, S. Thys, B. Van Bockel, J. Wang, V. De Smedt, and P. Leroux
A Low-Power, Real-Time Displacement Damage Dosimeter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. H. Warner, R. Hoheisel, C. D. Cress, P. P. Jenkins, J. R. Lorentzen, D. A. Scheiman, and M. K. Yakes
Dosimetry Mapping of Mixed-Field Radiation Environment Through Combined Distributed Optical Fiber Sensing and FLUKA Simulation . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Di Francesca, A. Infantino, G. Li Vecchi, S. Girard, A. Alessi, Y. Kadi, and M. Brugger
X-Rays, γ -Rays, and Proton Beam Monitoring With Multimode Nitrogen-Doped Optical Fiber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Girard, D. Di Francesca, A. Morana, C. Hoehr, P. Paillet, C. Duzenli, N. Kerboub, I. Reghioua,
      G. Li Vecchi,  A. Alessi,  O. Duhamel,  M. Trinczek,  E. Marin,  A. Boukenter,  Y. Ouerdane,  J. Mekki,  R. G. Alía,  Y. Kadi,  and  M. Brugger

TID Evaluation System With On-Chip Electron Source and Programmable Sensing Mechanisms on FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     G. Lentaris,  K. Maragos,  D. Soudris,  F. Di Capua,  L. Campajola,  M. Campajola,  A. Costantino,  G. Furano,  A. Tavoularis,  and  L. Santos
SOI Thin Microdosimeter Detectors for Low-Energy Ions and Radiation Damage Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. James, L. T. Tran, J. Vohradsky, D. Bolst, V. Pan, M. Carr, S. Guatelli, A. Pogossov, M. Petasecca,
      M. Lerch,  D. A. Prokopovich,  M. I. Reinhard,  M. Povoli, A. Kok, D. Hinde, M. Dasgupta, A. Stuchbery, V. Perevertaylo, and A. B. Rosenfeld

Uncertainty Characterization of Silicon Damage Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. J. Griffin

SINGLE-EVENT EFFECTS: DEVICES AND INTEGRATED CIRCUITS
Estimating Terrestrial Neutron-Induced SEB Cross Sections and FIT Rates for High-Voltage SiC Power MOSFETs . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. R. Ball, B. D. Sierawski,
      K. F. Galloway,  R. A. Johnson,  M. L. Alles, A. L. Sternberg, A. F. Witulski, R. A. Reed, R. D. Schrimpf, A. Javanainen, and J.-M. Lauenstein

Radiation Response of AlGaN-Channel HEMTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . M. J. Martinez, M. P. King, A. G. Baca, A. A. Allerman, A. A. Armstrong, B. A. Klein, E. A. Douglas, R. J. Kaplar, and S. E. Swanson

SINGLE-EVENT EFFECTS: TRANSIENT CHARACTERIZATION
SET Sensitivity of Trigate Silicon Nanowire Field-Effect Transistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Raine,
     M. Gaillardin,  M. Martinez,  O. Duhamel,  J. Riffaud,  T. Lagutere, C. Marcandella, P. Paillet, N. Richard, M. Vinet, F. Andrieu, and S. Barraud

Optimizing Optical Parameters to Facilitate Correlation of Laser- and Heavy-Ion-Induced Single-Event Transients in SiGe HBTs . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Ildefonso, Z. E. Fleetwood, G. N. Tzintzarov, J. M. Hales, D. Nergui,
      M. Frounchi, A. Khachatrian, S. P. Buchner, D. McMorrow, J. H. Warner, J. Harms, A. Erickson, K. Voss, V. Ferlet-Cavrois, and J. D. Cressler

Investigation of Single-Event Transients in AlGaN/GaN MIS-Gate HEMTs Using a Focused X-Ray Beam . . . . . . A. Khachatrian, N. J.-H. Roche,
      S. P. Buchner,   A. D. Koehler,   T. J. Anderson,   D. McMorrow,   S. D. LaLumondiere,   J. P. Bonsall,    E. C. Dillingham,   and    D. L. Brewe

Pulsed-Laser Induced Single-Event Transients in InGaAs FinFETs on Bulk Silicon Substrates . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Gong, K. Ni,
     E. X. Zhang,  A. L. Sternberg,  J. A. Kozub,  M. L. Alles,  R. A. Reed,  D. M. Fleetwood,  R. D. Schrimpf, N. Waldron, B. Kunert, and D. Linten

Laser-Induced Single-Event Transients in Black Phosphorus MOSFETs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Liang, R. Ma, K. Li, Y. Su,
     H. Gong,  K. L. Ryder,  P. Wang,  A. L. Sternberg,  E. X. Zhang,  M. L. Alles,  R. A. Reed, S. J. Koester, D. M. Fleetwood, and R. D. Schrimpf

The Effects of Temperature on the Single-Event Transient Response of a High-Voltage (>30 V) Complementary SiGe-on-SOI Technology . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. P. Omprakash, A. Ildefonso, Z. E. Fleetwood, G. N. Tzintzarov,
      A. S. Cardoso,   J. A. Babcock,    R. Mukhopadhyay,    A. Khachatrian,    J. H. Warner,    D. McMorrow,    S. P. Buchner,   and   J. D. Cressler

BASIC MECHANISMS OF RADIATION EFFECTS
Dopant-Type and Concentration Dependence of Total-Ionizing-Dose Response in Piezoresistive Micromachined Cantilevers . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. N. Arutt,
      P. D. Shuvra,  J.-T. Lin,  M. L. Alles,  B. W. Alphenaar,   J. L. Davidson,  K. M. Walsh,  S. McNamara,  D. M. Fleetwood,  and  R. D. Schrimpf

A Multifield and Frequency Electrically Detected Magnetic Resonance Study of Atomic-Scale Defects in Gamma Irradiated Modern
     MOS Integrated Circuitry
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. J. Myers, R. J. Waskiewicz, P. M. Lenahan, and C. D. Young
Effects of Proton Radiation-Induced Defects on Optoelectronic Properties of MoS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Foran, C. Mann, M. Peterson, A. Bushmaker, B. Wang, J. Chen, S. Yang, and S. B. Cronin
Total Ionizing Dose Effects and Proton-Induced Displacement Damage on MoS2-Interlayer-MoS2 Tunneling Junctions . . . . . . . . . . . . . P. Wang,
     C. J. Perini, A. O’Hara,  H. Gong,  P. Wang, E. X. Zhang, M. W. McCurdy, D. M. Fleetwood, R. D. Schrimpf, S. T. Pantelides, and E. M. Vogel

A New Analytical Tool for the Study of Radiation Effects in 3-D Integrated Circuits: Near-Zero Field Magnetoresistance Spectroscopy . . . . . . . . .
     . . . . . . . . J. P. Ashton, S. J. Moxim, P. M. Lenahan, C. G. McKay, R. J. Waskiewicz, K. J. Myers, M. E. Flatté, N. J. Harmon, and C. D. Young

SINGLE-EVENT EFFECTS: MECHANISMS AND MODELING
Mechanisms of Electron-Induced Single-Event Latchup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Tali,
      . . . . . . . . . . R. G. Alía, M. Brugger, V. Ferlet-Cavrois, R. Corsini,  W. Farabolini, A. Javanainen, G. Santin, C. Boatella Polo, and A. Virtanen

Understanding the Average Electron–Hole Pair-Creation Energy in Silicon and Germanium Based on Full-Band Monte Carlo Simulations . . . . .
      . . . . . . . . . . . . . . . . . J. Fang, M. Reaz, S. L. Weeden-Wright, R. D. Schrimpf, R. A. Reed, R. A. Weller,  M. V. Fischetti, and S. T. Pantelides
SEFI Modeling in Readout Integrated Circuit Induced by Heavy Ions at Cryogenic Temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Artola, S. Ducret, F. Advent, G. Hubert, and J. Mekki
Ultraenergetic Heavy-Ion Beams in the CERN Accelerator Complex for Radiation Effects Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . R. G. Alía, P. F. Martínez, M. Kastriotou, M. Brugger, J. Bernhard, M. Cecchetto, F. Cerutti, N. Charitonidis, S. Danzeca, L. Gatignon,
      A. Gerbershagen,  S. Gilardoni,  N. Kerboub,  M. Tali,  V. Wyrwoll,  V. Ferlet-Cavrois, C. Boatella Polo, H. Evans, G. Furano, and R. Gaillard

Impact of the Elemental Makeup of an IC in Generating Single-Event Upsets From Low-Energy (<10 MeV) Neutrons: A 3-D NAND Flash
     Case Study
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. M. Conway, M. J. Gadlage, J. D. Ingalls, A. M. Williams, D. I. Bruce, and D. P. Bossev
Heavy Ion Transport Modeling for Single-Event Burnout in SiC-Based Power Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. A. McPherson, P. J. Kowal, G. K. Pandey, T. P. Chow, W. Ji, and A. A. Woodworth


Conference Author Index


PART II OF TWO PARTS


REGULAR PAPERS
RADIATION INSTRUMENTATION

Effect of Gamma-Ray Energy on Image Quality in Passive Gamma Emission Tomography of Spent Nuclear Fuel . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Bélanger-Champagne, P. Peura, P. Eerola, T. Honkamaa, T. White, M. Mayorov, and P. Dendooven
Improvement of a PET Detector Performance by Setting Reflectors in Parallel With PMT Face . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. Inadama, H. Murayama, F. Nishikido, J. Ohi, and T. Yamaya
La- and La-/Ce-Doped BaF2 Crystals for Future HEP Experiments at the Energy and Intensity Frontiers Part I . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F. Yang, J. Chen, L. Zhang, C. Hu, and R.-Y. Zhu
La- and La-/Ce-Doped BaF2 Crystals for Future HEP Experiments at the Energy and Intensity Frontiers Part II . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F. Yang, J. Chen, L. Zhang, C. Hu, and R.-Y. Zhu
On the Instantaneous Dose Rate and Angular Dependence of Monolithic Silicon Array Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Biasi, N. Hardcastle, M. Petasecca, S. Guatelli, V. Perevertaylo, T. Kron, and A. B. Rosenfeld
Model-Based Pileup Events Correction via Kalman-Filter Tunnels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Liu, M. Liu, M. He, Y. Ma, and X. Tuo
Compact and Effective Detector of the Fast Neutrons on a Base of Ce-doped Gd3Al2Ga3O12 Scintillation Crystal . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . M. Korjik, K.-T. Brinkmann, G. Dosovitskiy, V. Dormenev, A. Fedorov, D. Kozlov, V. Mechinsky, and H.-G. Zaunick


Home | Contact & Support | Accessibility | Nondiscrimination Policy | Feedback | Privacy and Opting Out of Cookies

© Copyright 2019 IEEE – All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions. A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.

If you have questions about this mailing, or need assistance, please direct your inquiries to the IEEE Contact Center. Replies to this message do not reach IEEE.

If you would like to be removed from this email distribution, please Response: Unsubscribe from List]. If you have unsubscribed in error, please [Response: Subscribe to List].