T-NPS Header
T-PS Home  |  Editorial Board  |  T-PS in IEEE Xplore  |   Early Access  |  Manuscript Submission
NOVEMBER 2018 FEATURE ARTICLES - THESE ARE OPEN ACCESS FOR A LIMITED TIME

We are pleased to announce that the 2017 Impact Factor for T-PS has increased by 20% and now stands at 1.253!

A Primer on Pulsed Power and Linear Transformer Drivers for High Energy Density Physics Applications

by R. D. McBride, W. A. Stygar, M. E. Cuneo, D. B. Sinars, M. G. Mazarakis, J. J. Leckbee, M. E. Savage, B. T. Hutsel, J. D. Douglass, M. L. Kiefer, B. V. Oliver, G. R. Laity, M. R. Gomez, D. A. Yager-Elorriaga, S. G. Patel, B. M. Kovalchuk, A. A. Kim, P.-A. Gourdain , S. N. Bland, S. Portillo, S. C. Bott-Suzuki, F. N. Beg, Y. Maron, R. B. Spielman, D. V. Rose, D. R. Welch, J. C. Zier, J. W. Schumer, J. B. Greenly, A. M. Covington, A. M. Steiner, P. C. Campbell, S. M. Miller, J. M. Woolstrum, N. B. Ramey, A. P. Shah, B. J. Sporer, N. M. Jordan, Y. Y. Lau, and R. M. Gilgenbach
article one image
The objectives of this tutorial are as follows: 1) to help students and researchers develop a basic understanding of how pulsed-power systems are used to create high-energy-density (HED) matter; 2) to develop a basic understanding of a new, compact, and efficient pulsed-power technology called linear transformer drivers (LTDs); 3) to understand why LTDs are an attractive technology for driving HED physics (HEDP) experiments; 4) to contrast LTDs with the more traditional Marx-generator/pulse-forming-line approach to driving HEDP experiments; and 5) to briefly review the history of LTD technology as well as some of the LTD-driven HEDP research presently underway at universities and research laboratories across the globe. This invited tutorial is part of the Mini-Course on Charged Particle Beams and High-Powered Pulsed Sources, held in conjunction with the 44th International Conference on Plasma Science in May of 2017. more...
-----------------------

Inverse Liner Z-Pinch: An Experimental Pulsed Power Platform for Studying Radiative Shocks

by T. Clayson, S. V. Lebedev, F. Suzuki-Vidal, G. C. Burdiak, J. W. D. Halliday, J. D. Hare, J. Ma, L. G. Suttle, E. R. Tubman
article one image
We present a new experimental platform for studying radiative shocks using an "inverse liner z-pinch" configuration. This platform was tested on the MAGPIE pulsed power facility (~1 MA with a rise time of ~240 ns) at Imperial College London, U.K. Current is discharged through a thin-walled metal tube (a liner) embedded in a low-density gas-fill and returned through a central post. The resulting magnetic pressure inside the liner launched a cylindrically symmetric, expanding radiative shock into the gas-fill at ~10 km/s. This experimental platform provides good diagnostic access, allowing multiframe optical self-emission imaging, laser interferometry, and optical emission spectrography to be fielded. Results from experiments with an Argon gas-fill initially at 0.04 mg/cm 3 are presented, demonstrating the successful production of cylindrically symmetric, expanding shocks that exhibit radiative effects such as the formation of a radiative precursor. more...
-----------------------
header

A PUBLICATION OF THE IEEE NUCLEAR AND PLASMA SCIENCES SOCIETY

NOVEMBER 2018   |  VOLUME 46  |  NUMBER 11  |  ITPSBD  |  (ISSN 0093-3813)
PART I OF TWO PARTS

SPECIAL ISSUE ON Z-PINCH PLASMAS


GUEST EDITORIAL
Special Issue on Z-Pinch Plasmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. L. Giuliani and A. S. Safronova


SPECIAL ISSUE PAPERS
Liners and Foils
Inverse Liner Z-Pinch: An Experimental Pulsed Power Platform for Studying Radiative Shocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Clayson, S. V. Lebedev, F. Suzuki-Vidal, G. C. Burdiak, J. W. D. Halliday, J. D. Hare, J. Ma, L. G. Suttle, and E. R. Tubman
A Study of Thin Foil Explosion . . . . . . . T. A. Shelkovenko, S. A. Pikuz, I. N. Tilikin, V. M. Romanova, S. N. Mishin, L. Atoyan, and D. A. Hammer
External Magnetic Field Effects on Ablation of Current-Driven Foils Using an Extended Magnetohydrodynamics Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Byvank, N. Hamlin, L. Atoyan, C. E. Seyler, and B. R. Kusse
The Electrothermal Instability on Pulsed Power Ablations of Thin Foils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. M. Steiner, P. C. Campbell, D. A. Yager-Elorriaga, N. M. Jordan, R. D. McBride, Y. Y. Lau, and R. M. Gilgenbach
Self-Similar Solutions With Electrothermal Processes for Plasmas of Arbitrary Beta . . . . . . . . . . . . . . . . . . . . . . J. L. Giuliani and A. L. Velikovich

Wire Arrays
Studies of Implosion and Radiative Properties of Tungsten Planar Wire Arrays on Michigan’s Linear Transformer Driver Pulsed Power Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. L. Kantsyrev, A.S. Safronova, V. V. Shlyaptseva, I. K. Shrestha, C. J. Butcher, M. T. Schmidt-Petersen, A. Stafford, A. M. Steiner, D. A. Yager-Elorriaga,  P. C. Campbell,  S. M. Miller,  N. M. Jordan,  R. D. McBride,  R. M. Gilgenbach,  J. L. Giuliani,   and   A. L. Velikovich
Study of Implosion and Precursor Dynamics and Collapse in Wire Arrays With End-On Laser Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. V. Ivanov, D. Papp, and A. A. Anderson
2-D Numerical Investigation of the Formation of Z-Pinch-Driven Dynamic Hohlraum at 8-MA Current Level . . . . . . . . . . . . . C. Ning and Z. Chen
Obtaining Ultrahigh Pressures in Configuration of Multiwire Z–θ Pinch on Gamma Facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. D. Selemir, N. V. Zaviyalov, A. P. Orlov, and B. G. Repin
Calculation of Soft X-Ray Pulse Parameters on GAMMA-4 Facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. D. Selemir, N. V. Zaviyalov, A. P. Orlov, B. G. Repin, and A. L. Mozgovoy

Electron Emission & X-Pinches

Studying of Explosive Electron Emission From “Whisker” Cathode Using X-Ray Point-Projection Radiography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. A. Pikuz, T. A. Shelkovenko, I. N. Tilikin, E. V. Parkevich, A. R. Mingaleev, A. V. Agafonov, and D. A. Hammer
X-Ray Line Polarization of Ne-Like Mo Spectra from X-pinch Plasmas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. R. Childers, E. E. Petkov, V. L. Kantsyrev, A. S. Safronova, A. Stafford, V. V. Shlyaptseva, I. K. Shrestha, K. A. Schultz, and C. J. Butcher
Energetics X-ray Burst Observation in the Collapse of a X-pinch Conducted in a Small Capacitive Generator of Low Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Pavez, A. Sepúlveda, N. Cabrini, J. Pedreros, G. Avaria, P. San Martín and L. Soto
The Hybrid X-Pinch as a Source of XUV Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     V. M. Romanova, I. N. Tilikin, T. A. Shelkovenko, A. R. Mingaleev, E. A. Bolkhovitinov, A. A. Rupasov, A. E. Ter-Oganesyan,  and  S. A. Pikuz

Gas Puffs and Dense Plasma Foci

Radiative Characteristics of Reversed Polarity Gas-Puff Ar and Kr Plasmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. Shlyaptseva, K. Takasugi, T. Shikone, S. Hakamatsuka, V. L. Kantsyrev, A. S. Safronova, E. E. Petkov, and A. K. Gill
Magnetic Field Effect on the Initial Parameters of an Imploding Z-Pinch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. G. Rousskikh, A. S. Zhigalin, V. I. Oreshkin, and R. B. Baksht
Characterization of a Liner-on-Target Gas Injector for Staged Z-Pinch Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F. Conti, J. C. Valenzuela, N. Aybar, F. J. Wessel, M. P. Ross, J. Narkis, H. U. Rahman, E. Ruskov, and F. N. Beg
Study of Triple Ar Gas Puff Z-Pinches on 0.9-MA, 200-ns COBRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. Qi, S. V. Rocco, J. Engelbrecht, E. S. Lavine, P. de Grouchy, J. T. Banasek, L. Atoyan,
      T. Byvank,   W. M. Potter,  J. B. Greenly,  D. A. Hammer,  B. R. Kusse,  S. A. Pikuz,  T. A. Shelkovenko,  E. Kroupp, A. Fisher,  and  Y. Maron

Simulations of Recent Argon Gas-Puff Implosions on Z With Xe and Kr Dopants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. Tangri, J. L. Giuliani, A. L. Velikovich, N. Ouart, A. Dasgupta, J. P. Apruzese, A. J. Harvey-Thompson, C. A. Jennings, and B. Jones
Simulations of a Dense Plasma Focus on a High-Impedance Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Beresnyak, J. L. Giuliani, S. L. Jackson, A. S. Richardson, S. Swanekamp, J. Schumer, B. Weber, and D. Mosher
Theoretical Investigation of Z-Pinch Ar-Plasma Waveguide in a Millimeter-Scale Cross Section Capillary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. A. Shapolov, M. Kiss, and S. V. Kukhlevsky

Diagnostics

Investigation of Magnetic Fields in Z-pinches Via Multi-MeV Proton Deflectometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. Munzar, D. Klir, J. Cikhardt, B. Cikhardtova, J. Kravarik, P. Kubes, and K. Rezac
Time-Resolved Thomson Scattering on Laboratory Plasma Jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. T. Banasek, T. Byvank, S. V. R. Rocco, W. M. Potter, B. R. Kusse, and D. A. Hammer
Time-Resolved Thomson Scattering on Gas-Puff Z-Pinch Plasmas at Pinch Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. V. R. Rocco, J. T. Banasek, W. M. Potter, B. R. Kusse, and D. A. Hammer
Feasibility Study for Implementing an Optical Thomson Scattering System for Studying Photoionized Plasmas on Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. M. Kozlowski, R. C. Mancini, and M. E. Koepke
Validation of MHD Code FLUX-rz Using Scintillation Measurements of Thermal Radiation in Nested Wire Array Z-Pinch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. B. Repin, V. D. Selemir, A. G. Rep’ev, A. P. Orlov, B. G. Repin, and V. S. Pokrovskiy

Devices & Pulsed Power Facilities

A Primer on Pulsed Power and Linear Transformer Drivers for High Energy Density Physics Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. D. McBride, W. A. Stygar,
      M. E. Cuneo, D. B. Sinars, M. G. Mazarakis, J. J. Leckbee, M. E. Savage, B. T. Hutsel, J. D. Douglass, M. L. Kiefer,  B. V. Oliver,  G. R. Laity,
      M. R. Gomez,  D. A. Yager-Elorriaga,  S. G. Patel,  B. M. Kovalchuk,  A. A. Kim   P.-A. Gourdain,  S. N. Bland,  S. Portillo,   S. C. Bott-Suzuki,
      F. N. Beg,   Y. Maron,   R. B. Spielman,   D. V. Rose,  D. R. Welch,  J. C. Zier,  J. W. Schumer,  J. B. Greenly,  A. M. Covington,  A. M. Steiner,
      P. C. Campbell,   S. M. Miller,   J. M. Woolstrum,   N. B. Ramey,   A. P. Shah,   B. J. Sporer,  N. M. Jordan,   Y. Y. Lau,  and  R. M. Gnbailgech

The Generation of Warm Dense Matter Using a Magnetic Anvil Cell . . . . . . . . . . . . . . . . . . . . . . . . P.-A. Gourdain, A. B. Sefkow, and C. E. Seyler
Diagnostic and Power Feed Upgrades to the MAIZE Facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. C. Campbell, J. M. Woolstrum,
     F. Antoulinakis,    T. M. Jones,    D. A. Yager-Elorriaga,    S. M. Miller,    N. M. Jordan,    Y. Y. Lau,    R. M. Gilgenbach,    and    R. D. McBride

A Pulsed, High-Intensity Source of XUV Radiation Based on Ferrite Surface Breakdown at High Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. N. Tilikin, S. N. Tzhai, T. A. Shelkovenko, S. Y. Savinov, S. A. Pikuz, and A. R. Mingaleev
An Overview of the Charger-1 Pulsed Power Facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . B. Taylor, J. Cassibry, R. Adams, G. Doughty, B. Seidler, R. Cortez, P. Giddens, L. Fabisinski, D. Bradley, E. Gish, and M. Rodriguez


PART II OF TWO PARTS


REGULAR PAPERS
Basic Processes in Fully and Partially Ionized Plasmas
Design of APD Detector Circuit for Thomson Scattering System on J-TEXT Tokamak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Huang, L. Gao, Y. Zhou, P. Shi, Q. Qiu, and G. Zhuang

Plasma Diagnostics
Laser-Induced Fluorescence of Xe I and Xe II in Ambipolar Plasma Flow . . . . . . . . . . . . . . . P. Svarnas, I. Romadanov, A. Diallo, and Y. Raitses

Pulsed Power Science and Technology
Experimental Study of the Breakdown Characteristics of Polypropylene Films Under Nanosecond Voltage Pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Chen, S. Ji, W. Jia, J. Tang, F. Guo, J. Li, and W. Chen
Refining FE Structural Mechanics Simulations of a Railgun by Taking Into Account Electromagnetic Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Račkauskas, M. Schneider, and R. Kačianauskas
A High-Temperature Superconducting Pulsed-Power Supply Circuit With ICCOS . . . . . . . . . . . . . . . X. Zhang, Z. Li, H. Li, C. Zhang, and S. Liu

Arcs & MHD
Electromagnetic Radiation Characteristics of Series DC Arc Fault and Its Determining Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Q. Xiong, S. Ji, X. Liu, X. Li, L. Zhu, X. Feng, A. L. Gattozzi, and R. E. Hebner
Research on Corona Discharge Characteristics Based on Hybrid Numerical Algorithm . . . . . . . . . . . . . . . . . . H. Liu, R. Liao, K. Liu, and X. Zhao
Effect of the Nanostructured Layer Thickness on the Dynamics of Cathode Spots on Tungsten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. A. Barengolts, V. G. Mesyats, M. M. Tsventoukh, S. Kajita, D. Hwangbo, and N. Ohno


Home | Contact & Support | Accessibility | Nondiscrimination Policy | Feedback | Privacy and Opting Out of Cookies

© Copyright 2018 IEEE – All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions. A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.

If you have questions about this mailing, or need assistance, please direct your inquiries to the IEEE Contact Center. Replies to this message do not reach IEEE.

If you would like to be removed from this email distribution, please Response: Unsubscribe from List]. If you have unsubscribed in error, please [Response: Subscribe to List].