T-NPS Header
T-PS Home  |  Editorial Board  |  T-PS in IEEE Xplore  |   Early Access  |  Manuscript Submission
JANUARY 2019 FEATURE ARTICLES - THESE ARE OPEN ACCESS FOR A LIMITED TIME
We are pleased to announce that the 2017 Impact Factor for T-PS has increased by 20% and now stands at 1.253![Response: Read Receipt]

Evolution of a Pinch Column During the Acceleration of Fast Electrons and Deuterons in a Plasma-Focus Discharge

New Regime of Plasma Wake-Field Acceleration in the Extreme Blowout Regime

Beam-RF Simulation via Partial Decomposition of the Maxwell Equations Part I: Mathematical Framework

Simulations of Nonthermal Electrical Discharges in Air Over Solid Insulating Barrier

Theoretical Analysis on Affecting Factors of Power Line Harmonic Radiation

Manufacturing Design Assessment of the Welded In-Wall Shield Rib for ITER Vacuum Vessel

Virtual Engineering of a Fusion Reactor: Application to Divertor Design, Manufacture, and Testing

-----------------------
header

A PUBLICATION OF THE IEEE NUCLEAR AND PLASMA SCIENCES SOCIETY

JANUARY 2019  |  VOLUME 47  |  NUMBER 1  |  ITPSBD  |  (ISSN 0093-3813)

SPECIAL ISSUE ON SELECTED PAPERS FROM PLASMA 2017 JAPAN


GUEST EDITORIAL
Special Issue on for Selected Papers From PLASMA Conference 2017, Japan . . . . . . . . . . . . . . . . . . . Y. Ono, M. Ito, S. Ohshima, and D. Wang


SPECIAL ISSUE PAPERS
Fuel Pellet Alignment in Heavy-Ion Inertial Fusion Reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Kubo, T. Karino, H. Kato, and S. Kawata
2-D-Particle-in-Cell Simulation of Laser Wakefield in an Inhomogeneous Plasma . . . . . . . . . . . Y. Hayashi, Y. Kuramitsu, Y. L. Liu, and H. Habara
Estimation of the Fast-Ion Anisotropy Effect on the Neutron Source Intensity Measurement and the Experimental Observation . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Nishitani, H. Matsuura, N. Pu, K. Ogawa, H. Kawase, and M. Isobe
Neutron Shielding Design of Infrared Imaging Video Bolometer for LHD Deuterium Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Mukai, T. Nishitani, K. Ogawa, and B. J. Peterson
Pulsed-DC Discharge for Plasma CVD of Carbon Thin Films . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. A. A. Mamun, H. Furuta, and A. Hatta
Effects of the Driving Frequency on Temperature in a Multiphase AC Arc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Okuma, H. Maruyama, T. Hashizume, M. Tanaka, T. Watanabe, H. Nagai, T. Koiwasaki, and H. Nasu


PART II OF THREE PARTS


GUEST EDITORIAL
Special Issue on Plasma Assisted Technologies January 2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. Matveev and J. L. Lopez


SPECIAL ISSUE PAPERS
A Multipropellant RF Plasma Thruster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. B. Matveev, P. Gessini, and S. I. Serbin
Synthesis of Nitrogen Oxides in ICP/RF Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. B. Matveev and S. I. Serbin
Practical Ozone Disinfection of Soil Via Surface Barrier Discharge to Control Scab Diseases on Radishes . . . . . . . . . . . . . . . . . . . . . . F. Mitsugi
Experimental Study of Microwave Streamer Discharge Ignition of Premixed Air/Fuel Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Bulat, P. Bulat, P. Denissenko, I. Esakov, L. Grachev, K. Volkov, and I. Volobuev
Numerical Simulation of Ignition of Premixed Air/Fuel Mixtures by Microwave Streamer Discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Bulat, P. Bulat, P. Denissenko, I. Esakov, L. Grachev, K. Volkov, and I. Volobuev
Scarification of Altaic Flax Seeds With High-Power UV Radiation Generated by Plasma of Nanosecond Electric Discharges . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. E. Dubinov, J. P. Kozhayeva, and E. A. Zuimatch
Coalescence of Liquid Droplets Under Effect of Pulsed-Periodic Spark Discharges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. E. Dubinov, J. P. Kozhayeva, V. V. Golovanov, and V. D. Selemir
Behavior of Historical Printing Inks on Paper in High-Frequency Cold Plasma Discharges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E. G. Ioanid, V. Frunză, D. E. Rusu, A. M. Vlad, G. Savin, and C.-M. Popescu
Chlorobenzene Degradation in Simultaneous Gas–Liquid Phases Assisted by DBD Plasma . . . . . . . . . . . . . . . . . . . . . . . . . A. Mercado-Cabrera,
     B. Jaramillo-Sierra, R. Peña-Eguiluz, R. López-Callejas, R. Valencia-Alvarado, B. G. Rodríguez-Méndez, and A. E. Muñoz-Castro

Digital Signal Detection by a Glow Discharge Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Golan, A. Etinger, M. Einat, and Y. Pinhasi
Effects of Non-Maxwellian Electron Distribution Function to the Propagation Coefficients of Electromagnetic Waves in Plasma . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Li, Y. Wang, J. Wei, C. Yuan, Z. Zhou, X. Wang, and A. A. Kudryavtsev
Microwave-Assisted Flame With Sodium Seeding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. A. Tropina
Measurement of Microwave Propagation in Weakly Ionized Dusty Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Xia, Y. Wang, C. Yuan, Z. Zhou, A. A. Kudryavtsev, X. Wang, B. Xu, K. Xue, H. Li, and J. Wu


PART III OF THREE PARTS


REGULAR PAPERS
Basic Processes in Fully and Partially Ionized Plasmas
Shock Wave Generated Megahertz Radiation of Atmosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . A. H. Mkrtchyan, L. S. Grigoryan, H. F. Khachatryan, S. G. Bilén, M. Parrot, A. V. Sargsyan, and A. R. Aramyan
Amplitude Modulation of Weakly Nonlinear Electrostatic Solitary Waves in Ultrarelativistic Degenerated Semiconductor Quantum Plasma . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Banerjee
High-Pressure Helium Plasma Produced in the Local Electric Fields of a Piezoelectric Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. Norgard, S. Kovaleski, R. S. Brayfield, II, and A. L. Garner
Influence of Gas Flow on Partial Discharge Behaviors in Air and Nitrogen . . . . . . . . . . . . . . . . . . . . Y. Du, Y. Meng, K. Wu, X. Yang, and Y. Wang
Alternative 2-D Search Table for the Specific Heat Ratio of Air Improving Near-Space Hypersonic Flow Field Calculations . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Zhang and Y. Liu
The Effect of Environmental Temperature on Negative Corona Discharge Under the Action of Photoionization . . . . . . B. Lu, Q. Feng, and H. Sun
About Generation of Terahertz Radiation Due to the Nonlinear Interaction of Gaussian and Hermite–Cosh–Gaussian Laser Beams in
     Collisional Plasma Background: Optimization and Field Profile Controlling
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Safari and B. Jazi
Numerical Simulation of Plasma Kinetics in a Low-Pressure Inductively Coupled Discharge in Argon and Mercury Mixtures . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Ben Halima, S. Hajji, G. Barkaoui, K. Charrada, and G. Zissis
A 3-D Stochastic FDTD Algorithm for Wave Propagation in Isotropic Cold Plasma Medium Based on Bilinear Transform . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Fang, J.-F. Liu, Z.-H. Jiao, G.-H. Bai, and X.-L. Xi
Numerical Investigation on the Transient Evolution Mechanisms of Nonlinear Phenomena in a Helium Dielectric Barrier Discharge at
     Atmospheric Pressure
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . Y. Zhang, W. Ning, and D. Dai
Discharge and Deposition Characteristics of High-Power Impulse Magnetron Sputtering Using Various Target Materials . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Zheng, Z. Wu, S. Cui, S. Xiao, L. Liu, H. Lin, R. K. Y. Fu, X. Tian, F. Pan, and P. K. Chu
Measurements of the Potential Profiles of Glow Discharges Using an Emissive Probe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Radisch, F. Kopp, X. Wang, S. Kempf, and M. Horányi

Microwave Generation and Microwave-Plasma Interaction
An L-Band Relativistic Magnetron With Cathode Priming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Li, Y. Fan, and X. Wang
Preliminary Experimental Investigation of a Compact High-Efficiency Relativistic Magnetron With Low Guiding Magnetic Field . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Lei, F. Qin, S. Xu, and D. Wang
3-D Evaluation of Energy Extraction in Multitube Double-Gap Resonator Installed Downstream of a Multibeam Klystron . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. A. Tsarev and V. Y. Muchkaev
Experimental Investigation of an Ultrawide Bandwidth W-Band Pulsed Traveling- Wave Tube With Microfabricated Folded-Waveguide
      Circuits
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Du, J. Cai, P. Pan, R. Dong, X. Zhang, S. Liu, X. Wu, and J. Feng
Design of a Sm/Co Magnetic Circuit for S-Band 2.6-MW Magnetrons . . . . . . . . . . . . . . . . . . . . . J. Yang, J. Zhang, L. Xie, Y. Wang, and J. Wang
The Dependence of Resonance Frequency to Landing Angle in Reciprocal Scattering Phenomena of the Waves From an Elliptical
     Plasma Dielectric Antenna
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Golharani, Z. Rahmani, and B. Jazi
Experimental Studies on a Four-Way Microwave Power Combining System Based on Hybrid Injection-Locked 20-kW S-Band Magnetrons . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Liu, X. Chen, M. Yang, P. Wu, K. Huang, and C. Liu
Effects of Plasma Sheath on the Signal Detection of Narrowband Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Song, X. Li, B. Bai, and Y. Liu
Analysis of Multipactor Effect in a Partially Dielectric-Loaded Rectangular Waveguide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Berenguer, Á. Coves, F. Mesa, E. Bronchalo, and B. Gimeno
Electron Orbital Motion and the Threshold Voltage for Spatial-Harmonic Magnetrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O. P. Kulagin
Numerical Investigation of the Gas Flow Effects on SurfaceWave Propagation and Discharge Properties in a Microwave Plasma Torch . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. Zhang, L. Wu, J. Tao, and K. Huang
Beam-RF Simulation via Partial Decomposition of the Maxwell Equations Part I: Mathematical Framework . . . . . . . . . . . . . . . . R. H. Jackson, Jr.

Charged Particle Beams and Sources
Closed-Form Solutions for the Trajectories of Charged Particles in an Exponentially Varying Magnetostatic Field . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. C. van Vugt, L. P. J. Kamp, and G. T. A. Huijsmans
The Ion-Hose Instability in a High-Current Multipulse Linear Induction Accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Ekdahl
Time-and-Space Resolved Cathode Plasma Expansion Velocities in Magnetically Insulated Coaxial Diode With a Metal–Dielectric
     Cathode
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Zhu, J. Zhang, and J. Meng
Analysis of a Length Extensional Piezoelectric Transformer for Compact and Efficient Particle Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. A. Kemp, M. A. Franzi, A. Haase, and E. Jongewaard
New Regime of Plasma Wake-Field Acceleration in the Extreme Blowout Regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Tsiklauri
Experimental Study of the Accelerator of a Pulsed High-Current Radially Converging Electron Beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. I. Engelko, R. Fetzer, K. Tkachenko, K. Shchegolikhin, and G. Mueller
Exact Evaluation of K. Jensen’s General Thermal-Field-Photoemission Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Chernin

High Energy Density Plasmas and Their Interactions
Evolution of a Pinch Column During the Acceleration of Fast Electrons and Deuterons in a Plasma-Focus Discharge . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. Kubes, M. Paduch, M. J. Sadowski, J. Cikhardt,
     B. Cikhardtova, D. Klir, J. Kravarik, V. Munzar, K. Rezac, E. Skladnik-Sadowska, A. Szymaszek, K. Tomaszewski, D. Zaloga, and E. Zielinska


Industrial, Commercial, and Medical Applications of Plasmas
Disinfection by HO2 Radicals Generated by Negative Corona Discharge on Acidic Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. Suganuma, S. Kawasaki, and K. Yasuoka
Extractor Grid Effects on Beam Characteristics of Dual-Stage Ion Thruster . . . . . . . . . . . . . . . . . M. Yadollahi, A. S. Taleghani, and V. Esfahanian
Modeling and Simulation of the Effect of Cathode Gas Flow on the Lifetime and Performance of an Annular-Geometry Ion Engine . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Chen, T. Zhang, M. Liu, Z. Gu, W. Yang, and L. Yang
Enhancing PM Removal by Pulse Energized Electrostatic Precipitators—a Comparative Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Guo, C. Zheng, J. Zhang, Z. Xu, Z. Yang, W. Weng, Y. Wang, and X. Gao
Waste Foundry Sand/Bauxite Residue for Enhanced NOx Reduction in Diesel Exhaust Pretreated With Plasma/O3 Injection . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Madhukar and B. S. Rajanikanth
Surface Hardness Analysis of Aged Composite Insulators via Laser-Induced Plasma Spectra Characterization . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Wang, X. Hong, P. Chen, C. Zhao, Z. Jia, L. Wang, and L. Zou
Microsecond-Pulsed Dielectric Barrier Discharge Plasma-Treated Mist for Inactivation of Escherichia coli In Vitro . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . P. Ranieri, III, G. McGovern, H. Tse, A. Fulmer, M. Kovalenko, G. Nirenberg, V. Miller, A. Fridman, A. Rabinovich, and G. Fridman
Characteristics of a Gliding Arc Discharge Under the Influence of a Laminar Premixed Flame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Kong, J. Gao, J. Zhu, A. Ehn, M. Aldén, and Z. Li
Modeling of a Dielectric-Barrier Discharge-Based Cold Plasma Combustion Ignition System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Breden, C. A. Idicheria, S. Keum, P. M. Najt, and L. L. Raja
Design and Electrical Analysis of Multi-Electrode Cylindrical Dielectric Barrier Discharge Plasma Reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Niu, G. Guo, J. Tang, Y. Li, X. Wang, and Y. Duan
Numerical Simulation of the Trichel-Pulse in SF6 at Atmospheric Pressure . . . . . . . . . . . . . . . . . . D. N. Saleh, Q. Th. Algwari, and F. Kh. Amoori
Characterization of a Compact, Low-Cost Atmospheric-Pressure Plasma Jet Driven by a Piezoelectric Transformer . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. J. Johnson, D. R. Boris, T. B. Petrova, and S. G. Walton

Plasma Diagnostics
Experimental Study of Ethanol and Helium Mixture Glow Discharge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Perusquía, P. G. Reyes, M. C. González, A. Gómez, H. Martínez, and J. Vergara
Estimation of Plasma and Collision Frequencies Using Modified Microwave Interferometry Methods For Plasma Antenna Applications. . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Ghaderi, G. Moradi, and P. Mousavi
Research on Beam Emission Spectroscopy Combined HL-2A Tokamak Real Experimental Data With Spectra Simulation Code. . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Wu, Y. C. Chen, P. Chen, Y. J. Chen, L. M. Yao, and J. L. Fu
Evaluation of Spatial Resolution of Neutron Profile Monitor in LHD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Kawase, K. Ogawa, T. Nishitani, N. Pu, and M. Isobe, and LHD Experiment Group
Electronegativity Measurements and Analysis for CO2 and CO in DC Plasma Discharge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . J. Rodríguez, J. López-Patiño, F. Vázquez, B. E. Fuentes, H. Martinez, E. Ramírez Álvarez, and F. B. Yousif
Quantitative Schlieren Diagnostic Applied to a Nitrogen Thermal Plasma Jet. . . . . . . . . . . . . J. C. Chamorro, L. Prevosto, E. Cejas, and H. Kelly
Review of Spatial Distribution Modes in a 2.45-GHz Hydrogen Plasma. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Megía-Macías and O. D. Cortázar
Pyrometric and Spectroscopic Measurements of Temperatures of Metallic Dust Combustion Ignited by Characterized Spark Discharge
     in a Hartmann Tube
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Sankhé, S. Bernard, S. Pellerin, P. Gillard, and M. Wartel

Pulsed Power Science and Technology
Analysis of Magnetic Field Waveforms of Different Launching Stages of Rail Gun Based on Wavelet Transform . . . . . . R. Cao, Z. Duo, and M. Su
550-W Ultraviolet Exciplex Source for Pulsed Power Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Feathers, J. Stephens, and A. Neuber
A High-Voltage Pulse Generator Based on PFN and Varistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Q. Wu, Y. Cui, J. Gao, S. Li, and H. Yang
Pulse Magnetization of Strap Toroidal Magnetic Core . . . . . . . . . . . . . . . . . . . . B. E. Fridman, K. M. Lobanov, D. G. Scherbakov, and A. A. Firsov
Performance Analysis of Electromagnetic Railgun Launch System Based on Multiple Experimental Data . . . . . . . S. Li, R. Cao, Y. Zhou, and J. Li
Beam Steerable Array Antenna Based on Rectangular Waveguide for High-Power Microwave Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L.-Z. Yu, C.-W. Yuan, J.-T. He, and Q. Zhang
Hybrid Analog and Digital Control of a High Current Converter Based on an EDLC Bank for Rapidly Decreasing Input Voltage . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J.-E. Baek, J.-H. Rhee, and K.-C. Ko
A Modular Topology of Marx Generator Using Buck–Boost Converter . . . . . . . . . . . . . . . . . . M. Taherian, M. Allahbakhshi, E. Farjah, and H. Givi
Analysis of the Conduction Process for Active Surge Protection Gap With Combination Wave Energy Injection . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Yao, Y. Le, W. Xu, P. Han, W. Sun, and J. Chen
High-Voltage Capacitive Nonlinear Transmission Lines for RF Generation Based on Silicon Carbide Schottky Diodes . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. R. Raimundi, J. O. Rossi, E. G. L. Rangel, L. C. Silva, and E. Schamiloglu
Replacement of Marx Generator by Tesla Transformer for Pulsed Power System Reliability Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Zhao, W. Xie, J. Jiang, L. Chen, S. Feng, M. Wang, and Z. Wang
Analysis of Internal Resistance in a Piezoelectric Generator Under an Elastic Wave With High-Pressured Gas Gun . . . . . . . . . . . . . . . S.-M. Han
Development and Validation of a Multiphysics Coupling Model of the Pulsed Electromagnetic Inductive Valve for Planar Pulsed Inductive
      Plasma Thruster
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Guo, M. Cheng, X. Yang, X. Li, and B. Che
Experimental Investigations on Specific Energy Deposition and Burst Characteristics in Electrically Exploded Single Copper Wires . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Batra, A. C. Jaiswar, R. Valvi, and T. C. Kaushik
Simulations, Experiments, and Launch Characteristics of a Multiturn Series–Parallel Rail Launcher. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Xing, B. Lei, Q.-A. Lv, H. Xiang, J. Chen, and R. Zhu
Modeling of an Air-Core Compulsator and the Pulse Shaping Using Optimization Algorithm . . . . . . . . . . . . . . . . . . . . X. Tao, K. Liu, and H. Wang
Effect of Inductance of Inductive Energy Storage System on Resistance of an Electrically Exploded Conductor-Based Opening Switch and
      Profile of Current Transferred Into Low Inductance Loads
. . . . . . . . . . . . . . . . . . . . . . S. P. Nayak, M. D. Kale, A. Sharma, and T. C. Kaushik
A Fast Modular Semiconductor-Based Marx Generator for Driving Dynamic Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Hochberg, M. Sack, D. Herzog, A. Weisenburger, W. An, R. Fetzer, G. Mueller

Arcs & MHD
Experimental Study on Lightning Attachment Manner to Wind Turbine Blades With Lightning Protection System . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Guo, Q. Li, Y. Ma, H. Ren, Z. Fang, C. Chen, and W. H. Siew
Modeling of Plasma Dispersion Process in Vacuum Interrupters During Postarc Interval Based on FEM . . . . . . . . . . . . . . . . . . . . . A. Shemshadi
A Method of Monitoring Partial Discharge in Switchgear Based on Ozone Concentration . . . . . . . . . . . . P. Yao, H. Zheng, X. S. Yao, and Z. Ding
Experimental Investigation of Triggered Vacuum Arc Behavior Under Different Composite Structural Contacts . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. Shi, L. Wang, R. Lin, J. Ma, J. Deng, and S. Jia
A Review of the Synergy Effect in Multibreak VCBs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Ge, X. Cheng, M. Liao, X. Duan, and J. Zou
Application of PI/MWCNT Nanocomposite for AC Corona Discharge Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . V. Megala and C. P. Sugumaran
Effects of Plasma–Suspension Interaction on Axial Injection DC Suspension Plasma Spray . . . . . . . . . . . . . . . . T. Suzuki, H. Saito, and T. Fujino
Influence of Ambient Gas Pressure on Cathode Erosion Rate in a Vacuum Arc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. Nemchinsky
Parallel Computing of 2-D Bifurcation Diagrams in Circuits With Electric Arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. Marszalek and J. Sadecki
Determination of Axial Electric Field Distribution in Blown Arcs With Differential Method . . . . . . . . . . . . . . . . . . . . . . L. S. J. Bort and C. M. Franck
Effects of Supply Current and Armature Structure on Melting Characteristics of Armature Surface in Sliding Electric Contact . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Li, W. Ma, J. Lu, S. Tan, Y. Zhang, and X. Cai
Simulations of Nonthermal Electrical Discharges in Air Over Solid Insulating Barrier . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Singh and Y. V. Serdyuk
Characteristics of Negative Corona Discharge in Air at Various Gaps . . . . . . . . . . . . . . . . . . . H. Sun, S. Huang, Q. Wang, S. Wang, and W. Zhao
A “Resonance” Method to Decrease Electrode Erosion in Magnetically Rotated Arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. Nemchinsky
Performance and Characteristics of a Small-Current DC Arc in a Short Air Gap . . . . . . . . . . . . . . . . . . . . . . . R. Guan, Z. Jia, S. Fan, and Y. Deng
Ultrahigh-Pressure Nitrogen Arcs Burning Inside Cylindrical Tubes . . . . . . . . . . . . . . . . . . .. . . . . . . F. Abid, K. Niayesh, and N. S. Støa-Aanensen

Space Plasmas
Head-On Collision of Electron-Acoustic Solitons in a Magnetized Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. E. Yahia, S. K. El-Labany, R. Sabry, W. M. Moslem, and E. A. Elghmaz
Theoretical Analysis on Affecting Factors of Power Line Harmonic Radiation . . . . . . . . . . . . . . . . . . . . . . . . J. Wu, Q. Guo, X. Yan, and C. Zhang

Dusty Plasmas
Thermal Conductivity and Shear Viscosity of Strongly Coupled Dusty Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Begum and N. Das
Dust Charging and Propagation of Dust-Acoustic Waves in a Multicomponent Thermal Dusty Plasma System . . . . . . . . . . R. Mishra and M. Dey

Fusion Science and Technology
Test System Upgrade for ITER Current Lead Series Production at ASIPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Ding, C. Liu, Q. Du, Y. Dong, J. Wang, K. Lu, Y. Song, E. Niu, and P. Bauer
Parametric Dependence of Type-I and Type-III ELMs and Dynamic Characteristics for ELM Filaments in EAST Tokamak . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Chen, F. Zhong, Q. Yang, L. Li, Y. Liang, B. Zhang, and L. Hu

Electromagnetic Launch Science and Technology
Modeling for the Calculation of Interior Ballistic Velocity of Electromagnetic Rail Launch Projectile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Li, J. Lu, J. Feng, X. Zhang, and P. Du
Design and Analysis of a Novel Three-Coil Reconnection Electromagnetic Launcher . . . . . . . . . . . . . G. Fan, Y. Wang, Q. Xu, X. Nie, and Z. Yan
Simulation of Dynamic and Electromagnetic Characteristics of a Superconductor Bulk in a Single-Stage Induction Coilgun . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. Yang, L. Yao, and Z. Fu

Technical Note
Vacuum Arc Plasma Heated by Sub-Terahertz Radiation as a Source of Extreme Ultraviolet Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Vodopyanov, S. Razin, M. Viktorov, and A. Sidorov

Special Issue on Plenary and Invited Papers of the 18th Chinese National Conference on Plasma Science
Influence of Electrode Geometry and Gas on the Breakdown Voltage of Hollow Cathode Discharge With Spark Geometry Under
     Nanosecond Pulses
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Zhang, L. Quan, J. Gong, and W. Zhang
Evaluation of Photoelectric Characteristics of a Volume DBD Excited by Power Density Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Chen, Y. Gan, C. Liu, P. Fang, T. Yi, W. Su, Y. Jiang, X. He, C. Zhu, and J. Fei
Aerodynamic Dispersion of Anode Arc Attachment Through a Converging–Diverging Nozzle . . . . . . . . . . . H.-J. Huang, W.-X. Pan, and C.-K. Wu
Warm-Dense-Matter State of Iron Generated by Intense Heavy-Ion Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Zhang, Y. Zhao, J. Ren, J. Li, W. Liu, D. Wu, R. Cheng, G. Xiao, D. H. H. Hoffmann, and Z. Xu

Special Issue on Selected Papers from SOFE 2015
Cleaning of the Eddy Current Effects From Magnetic Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . O. Kudlacek, G. Marchiori, C. Finotto, P. Bettini, R. Henriques, B. B. Carvalho, H. Figueiredo, and H. Fernandes

Special Issue on Selected Papers from SOFE 2017
Development of Primary Vacuum Windows for ITER Diagnostics . . . . . . . . . . . . . . . . . . . . . . . V. S. Udintsev, P. Maquet, N. Gimbert, T. Giacomin,
     J. Guirao, S. Iglesias, C. Vacas, M. J. Walsh, S. Pak, B. Conway, M. Dapena, J.-M. Drevon, G. Eaton, S. Hughes, T. Darby,  and  R. Bamber

Personnel Safety at Magnetic Fusion Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. C. Cadwallader
WCLL Blanket Module Structure Variation Influence on Neutron Activation Inventories . . . . . . . . . . . . . . . . . . . . . . . A. Tidikas and G. Stankūnas
Manufacturing Design Assessment of the Welded In-Wall Shield Rib for ITER Vacuum Vessel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. G. Kim, H. S. Kim, G. H. Kim, C. K. Park, H. K. Moon, K. H. Hong, W. H. Chung, and J. M. Martinez
Measurements and Model Calculations of Activation Reaction Rate for (n, p) Reaction on 54Fe Isotope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. Chen, Q. Zhu, H. Du, and S. Liu
Virtual Engineering of a Fusion Reactor: Application to Divertor Design, Manufacture, and Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. R. Barrett, L. M. Evans, M. Fursdon, F. Domptail, S. C. McIntosh, D. Iglesias, and E. Surrey
Structural Design and Analysis of the Feeder in the CFETR CS Model Coil Cryogenic Test Facility . . . . . . . . . . . . . . . . L. Guo, Y. Wu, and H. Liu
Design and Analysis of an Actively Cooled Window for a High-Power Helicon Plasma Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Lumsdaine, S. Meitner, R. Goulding, J. Caneses, D. McGinnis, J. Rapp, and J. Burnett
Observation Scenario of Knock-on Tail Shape Using Doppler-Broadening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Kawamoto and H. Matsuura
A Review of Recent Studies on Particle Recycling From Liquid Metals With/Without Convection Under Plasma Bombardment . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Hirooka and H. Bi

Special Issue on Pulsed Power Science and Technology - 2018
Multiparametric Finite-Element Simulation and Experiment on Thermal Effects in Skin Tumor Exposed to High-Frequency Nanosecond
      Pulse Bursts
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Mi, W. Peng, S. Rui, C. Bian, X. Tang, J. Xu, D. Kuang, and Q. Luo
Determination of Gas-Filled Surge Arresters Lifetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. -D. Stankovi´c and L. S. Perazić
Effect Analysis of the Time Sequence to the Penetration Performance of High-Speed Metal Jet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Xiang, X. Meng, C. Liang, X. Yuan, Q. Lv, B. Lei, and Q. Zhang
Design and Simulation of New Type Reactor in the Wastewater Treatment System Based on Discharge Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H.-J. Xiang, B. Lei, X.-C. Yuan, Q.-A. Lv, and Q. Zhang
A 50-T High-Stability Flat-Top Pulsed Magnetic Field Energized by a 100-MW Pulsed Alternator-Rectifier Power Supply With
     Model Predictive Control
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Fang, H. Ding, Y. Huang, Y. Lv, J. Zhou, Z. Zhao, and Q. Wang
In-Vacuum Surface Flashover Characteristics of Insulator With Different Oil Coating Regions . . . . . . . . . . . . . F. Li, J. Jiang, L. Xu, and M. Wang
Design and Electromagnetic Analysis of an Induction-Type Coilgun System With a Pulse Power Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B.-S. Go, D.-V. Le, M.-G. Song, M. Park, and I.-K. Yu
Development of a High-Power Burst Pulse Generator Based on the Sequential Operation of Magnetic Switches . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Sato, K. Yasu, K. Nukaga, and Y. Minamitani
Evaluation of a Novel Capacitor Charging Structure for Flicker Mitigation in High-Power Long-Pulse Modulators . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Collins and C. A. Martins
Picosecond-Range Avalanche Switching of Bulk Semiconductors Triggered by Steep High-Voltage Pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. I. Brylevskiy, I. A. Smirnova, N. I. Podolska, Y. A. Zharova, P. B. Rodin, and I. V. Grekhov
Practical Constraints on Nonlinear Transmission Lines for RF Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E. G. L. Rangel J. O. Rossi, J. J. Barroso, F. S. Yamasaki, and E. Schamiloglu
Dual Resonant Voltage Droop Compensation for Bipolar Solid-State Marx Generator Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Canacsinh, J. F. Silva, and L. M. Redondo
Magnetic Field Diffusion in Medium-Walled Conductors . . . . . . . . . . . . . . L. Collier, T. Buntin, J. Dickens, J. Mankowski, J. Walter, and A. Neuber


Home | Contact & Support | Accessibility | Nondiscrimination Policy | Feedback | Privacy and Opting Out of Cookies

© Copyright 2019 IEEE – All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions. A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.

If you have questions about this mailing, or need assistance, please direct your inquiries to the IEEE Contact Center. Replies to this message do not reach IEEE.

If you would like to be removed from this email distribution, please Response: Unsubscribe from List]. If you have unsubscribed in error, please [Response: Subscribe to List].