T-NPS Header
T-PS Home  |  Editorial Board  |  T-PS in IEEE Xplore  |   Early Access  |  Manuscript Submission
OCTOBER 2018 FEATURE ARTICLES - THIS ARTICLE IS OPEN ACCESS FOR A LIMITED TIME

We are pleased to announce that the 2017 Impact Factor for T-PS has increased by 20% and now stands at 1.253!

Arc Appearance and Cathode Spot Distribution in a Long-Gap High-Current Vacuum Arc Controlled by an External Axial Magnetic Field

by B. Tezenas du Montcel, P. Chapelle, C. Creusot, and A. Jardy
article one image
An experimental study of a high-current vacuum arc generated between two static CuCr25 contacts spaced 20 or 30 mm apart was conducted to characterize the arc appearance and the cathode spot (CS) distribution. The arc was ignited from the lateral surface of the cathode and controlled using an external axial magnetic field. Under the investigated experimental conditions, three distinct arc modes have been observed: multiple arc, diffuse, and diffuse columnar modes. The latter appeared at low B AMF /I arc values, typically below 4 mT/kA. The temporal evolutions of the spot spatial distribution and the associated distribution of the current density were analyzed by processing high-speed video images of the cathode. Various types of distribution depending mainly on current were identified. At low currents (up to 13 kA), the CS distribution covered only a fraction of the cathode surface. At intermediate currents (in 17.2-31.1-kA range), CSs were present on the whole circumference of the cathode and the CS distribution included a closed region without spot. The latter was progressively filled by CSs, yet it totally disappeared before the end of arcing only when its location was off-centered with respect to the cathode axis. At high currents (up to 36.3 kA), the whole cathode surface was occupied by CSs at current peak. The azimuthally averaged radial distribution of the current density was found to be relatively uniform in the regions occupied by CSs. An average spot current of 36.5 ± 2.5 A has been estimated. more...
-----------------------
header

A PUBLICATION OF THE IEEE NUCLEAR AND PLASMA SCIENCES SOCIETY

OCTOBER 2018   |  VOLUME 46  |  NUMBER 10  |  ITPSBD  |  (ISSN 0093-3813)
PART I OF TWO PARTS

SPECIAL ISSUE ON PULSED POWER SCIENCE AND TECHNOLOGY - 2018


GUEST EDITORIAL
Special Issue on Pulsed Power Science and Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Bayne, B. Novac, H. O’Brien, and H. Li


SPECIAL ISSUE PAPERS
Pulsed Power Technologies
System Design and Measurements of a 115-kV/3.5-ms Solid-State Long-Pulse Modulator for the European Spallation Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Jaritz and J. Biela
Optimal Design of Medium-Frequency Fe-Based Amorphous Transformer Based on Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Xu, L. Chen, W. Guo, C. Shangguan, J. Zuo, and K. He
Design and Development of a Compact All-Solid-State High-Frequency Picosecond-Pulse Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Li, E. Wang, J. Tan, R. Zhang, S. Wang, C. Yao, and Y. Mi
Modeling and Construction of Marx Impulse Generator Based on Boost Converter Pulse-Forming Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. M. H. Hosseini, H. R. Ghafourinam, and M. H. Oshtaghi
Study on the Impact of Machine Parameter Variations on Performance of Modular Pulsed Alternator Power System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Cui, S. Wang, S. Wu, and X. Li
Skin Parameter of Massive Conductors and Transients in Electrical Circuits of Pulsed Power Facilities . . . . . . . . . . . . . . . . . . . . . B. E. Fridman
A Compact Explosive-Driven Flux Compression Generator for Reproducibly Generating Multimegagauss Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Zhou, Z. Gu, H. Luo, Y. Tong, X. Tang, F. Tan, J. Zhao, and C. Sun
Design Validation of a Single Semiconductor-Based Marx-Generator Stage for Fast Step-Wise Arbitrary Output Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Hochberg, M. Sack, D. Herzog, A. Weisenburger, and G. Mueller
Two Compact Coaxial Cable Connectors With Self-Integrating Sensors to Measure Nanosecond Pulse Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Zhao, J.-C. Su, R. Li, B.-X. Yu, B. Zeng, J. Cheng, L. Zheng, Y. Zhang, and X.-D. Xu
Comparison of Electrostatic-Field and Transient-Field Distributions for Insulators in Pulsed Power Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Zhao, J. Su, Y. Pan, and X. Zhang
A New Open-Loop Synchronization Method Based on Compensation of Phase Deviation for Pulsed Generator Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Ren, H. Ding, Y. Xu, Z. Zhao, L. Chen, Y. Huang, and J. Zhou
Development and Test of a 400-kV PFN Marx With Compactness and Rise Time Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F. Lassalle, A. Morell, A. Loyen, T. Chanconie, B. Roques, M. Toury, and R. Vezinet
Erosion and Surface Morphology of the Graphite Electrodes in High-Current, High-Coulomb Transfer Gas Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Chen, L. Yang, Z. Liu, D. Huang, and A. Qiu
Modular Multilevel Converter Grid Interface for Klystron Modulators: An Augmented Modulation Scheme for Arm Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Jankovic, A. Costabeber, A. Watson, J. C. Clare, and D. Aguglia
Marx Generator Prototype for Kicker Magnets Based on SiC MOSFETs . . . . . . . . . . . . . . . . . L. M. Redondo, A. Kandratsyeu, and M. J. Barnes
Repetitive High-Voltage Pulse Modulator Using Bipolar Marx Generator Combined With Pulse Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Wang, L. Tong, K. Liu, and Y. Huang
Prototype Inductive Adders With Extremely Flat-Top Output Pulses for the Compact Linear Collider at CERN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Holma and M. J. Barnes
All Solid-State Rectangular Sub-Microsecond Pulse Generator for Water Treatment Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Rao, Y. Lei, S. Jiang, Z. Li, and J. F. Kolb
Modeling and Experimental Study on Multibrick Parallel Discharge Driver Based on PEEC Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Yan, G. Wang, X. Chen, Y. Gou, S. Zhang, Y. Wang, S. Shen, L. Cheng, K. Mei, and W. Ding
HV Pulse Transformer Generalized Equivalent Circuit Identification Based on Detailed Mechanical Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Candolfi, P. Viarouge, D. Aguglia, and J. Cros
Flexible, Highly Dynamic, and Precise 30-kA Arbitrary Current Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Tsolaridis and J. Biela
Compact Power Supply With Integrated Energy Storage and Recovery Capabilities for Arbitrary Currents up to 2 kA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Lampasi, G. Taddia, S. M. Tenconi, and F. Gherdovich
Study on the Voltage Maintaining Performance of High Energy Density Capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Yi, H. Li, L. Li, L. Li, Q. Chen, H. Jiang, F. Lin, Q. Zhang, and Y. Liu
Theoretical Investigation on Matching Multistage Circular Pulse-Forming Line to Transmission Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Su, R. Li, L. Zhao, J. Cheng, and B. Yu
Optimal Design of High-Power Modular Multilevel Active Front-End Converter Using an Innovative Analytical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Zabihinejad and P. Viarouge

Pulsed Power Applications

Finite-Element Simulation and Experiments on Plastic Heating in the Process of Electromagnetic Pulse Forming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Zhou, J. Tan, C. Yao, C. Li, X. Wang, W. Zhou, and X. Wang
Investigation of the Dielectric Breakdown Strength of Vented Li-Ion Electrolyte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. N. Nybeck, D. A. Wetz, Jr., D. A. Dodson, and J. M. Heinzel
Effect of Deposition Energy on Underwater Electrical Wire Explosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Li, D. Qian, X. Zou, and X. Wang
Ion-Implantation Modification of Surface Flashover Properties in Vacuum of Polytetrafluoroethylene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. Zhao, R. Xu, C. Ren, J. Wang, and P. Yan
Effect of Temperature on Breakdown Characteristics of Propylene Carbonate Under Microsecond Pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Liu, Z. Zhang, and H. Liu
High-Quality Implosion of Overmassed Z-Pinch in the Experiment With Magnetocumulative Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Repin, A. G. Rep’ev, A. P. Orlov, B. G. Repin, and V. S. Pokrovskiy
Influence of Runaway Electrons on the Formation Time of Nanosecond Discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. Y. Kozhevnikov, A. V. Kozyrev, N. S. Semeniuk, and A. O. Kokovin
Imaging of Discharge Plasma Channel Evolution Process of Microsecond Wire Explosion in Air . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Yin, X. Li, J. Wu, H. Shi, W. Zhong, and Q. Huang
Numerical Study of Magnetically Driven Isentropic Compression Experiments on PTS . . . . . Y. Zhang, Z. Zhang, G. Wang, N. Ding, and C. Xue
Radiographic Investigation of Metal-Puff Plasma Jets Generated by Vacuum Arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. G. Rousskikh, A. P. Artyomov, A. S. Zhigalin, A. V. Fedyunin, and V. I. Oreshkin
Effect of Mesh Geometry on Power, Efficiency, and Homogeneity of Barrier Discharges in the Presence of Glass Dielectric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E. Gnapowski, S. Gnapowski, and J. Pytka
Experimental Study of Multipoint Ignition in Methane–Air Mixtures by Pulsed Microwave Power . . . . . . . . C. Liu, G. Zhang, H. Xie, and L. Deng
Design of Ion Pump Power Supply Based on LCC Resonant Converter . . . . . . . . . . . J.-S. Bae, S.-R. Jang, H.-S. Kim, C.-H. Yu, and S.-H. Ahn
Some Promises of Magnetic Implosion of High-Velocity Liners in the ALT-3 Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. M. Buyko
Oil Extraction From Microalgae by Pulsed Power as a Renewable Source of Energy . . . . . B. Hosseini, A. Guionet, H. Akiyama, and H. Hosano
Two Typical Charge Transportation Characteristics in Nanosecond-Pulse Surface Dielectric Barrier Discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Jiang, T. Shao, C. Zhang, P. Yan, and H. Liu
Spectrum Analysis for Vacuum Surface Flashover of Different Insulator Materials . . . . . . . . . . . . . . . . . X. Le, W. Meng, L. Feng, and D. Jianjun
Fundamental Investigation of Streamer Discharges in Coaxial Reactor for NOx Treatment Using Nanosecond Pulsed Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Omatsu, S. Ishino, K. Teranishi, and N. Shimomura
Self-Sustained Plasma-Beam Discharge at High Energy Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. O. Hrechko, N. A. Azarenkov, A. F. Tseluyko, I. V. Babenko, D. L. Riabchikov, and I. N. Sereda
Generation of Intense PEFs Using a Prolate Spheroidal Reflector Attached to the Bipolar Former of a 10-GW Pulsed Power Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. M. Novac, R. Xiao, P. Senior, L. Pécastaing, and I. R. Smith
Study of Exhaust Air Treatment From a Ship Building Factory Painting Facility Using Pulse Plasma Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H.-S. Jin, S.-H. Song, C.-G. Cho, S.-M. Park, and H.-J. Ryoo
Characterization and Statistical Analysis of Breakdown Data for a Corona-Stabilized Switch in Environmentally Friendly Gas Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. W. Macpherson, M. P. Wilson, S. J. MacGregor, I. V. Timoshkin, M. J. Given, and T. Wang
Effects of Pulsed Power Control on Plasma Water Treatment Using LTD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Sugai, A. Tokuchi, and W. Jiang
Breakdown Characteristics of Plasma Closing Switch Filled With Air, N2, CO2, and Ar/O2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Yao, I. V. Timoshkin, S. J. MacGregor, M. P. Wilson, M. J. Given, and T. Wang
Design and Implementation of Novel Series Trigger Circuit for Xenon Flash Lamp Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S.-H. Song, C.-G. Cho, S.-M. Park, H.-I. Park, and H.-J. Ryoo
Hardware-in-the-Loop Model Validation of Charging Capacitors With Multipulse Rectifiers for High Rep-Rate Shipboard-Pulsed DC Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. J. McRee, D. A. Wetz, Jr., D. A. Dodson, and J. M. Heinzel

Electromagnetic Launchers and Electromagnetic Radiations

Power Supply Options for a Naval Railgun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Hundertmark and O. Liebfried
Design of an Attractive Force Circuit of Pulsed Power System for Multistage Synchronous Induction Coilgun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M.-G. Song, D.-V. Le, B.-S. Go, M. Park, and I.-K. Yu
Design of an Electromagnetic Induction Coilgun Using the Taguchi Method . . . . . . . . . . . . D.-V. Le, B.-S. Go, M.-G. Song, M. Park, and I.-K. Yu
Armature Shape Optimization of an Electromagnetic Launcher Including Contact Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Ceylan, M. U. Güdelek, and O. Keysan
Electromagnetic Space Launch Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. R. McNab
Armature Velocity Control Strategy and System Efficiency Optimization of Railguns . . . . . . . . . . . . . . . . . . . . . . X. Chang, X. Yu, X. Liu, and Z. Li
Review of Experiments on Microwave Beam Steering in Arrays of High-Power Oscillators by the Control of Voltage Rise Time . . . . . . . . . . . . . . . V. V. Rostov, I. V. Romanchenko, A. V. Gunin, M. S. Pedos, S. N. Rukin, K. A. Sharypov, S. A. Shunailov, M. R. Ulmaskulov, and M. I. Yalandin
Hybrid Nonlinear Transmission Lines Used for RF Soliton Generation . . . . . . . . . . L. P. Silva Neto, J. O. Rossi, J. J. Barroso, and E. Schamiloglu


PART II OF TWO PARTS


REGULAR PAPERS
Industrial, Commercial, and Biological Applications of Plasmas
A Comparison of the Effects of Ambient Air Plasma Generated by Volume and by Coplanar DBDs on the Surfaces of PP/Al/PET Laminated Foil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Shekargoftar, J. Kelar, R. Krumpolec, J. Jurmanová, and T. Homola
Numerical Identification of Trivelpiece–Gould Waves in an Electron Cyclotron Resonance Etching Reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Tamura, T. Tetsuka, N. Tamari, D. Kuwahara, and S. Shinohara
Surface Modification and Aging of Polyacrylonitrile Butadiene Styrene Polymer Induced by Treatment in RF Oxygen Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Holc, R. Zaplotnik, M. Mozetic, and A. Vesel
Full-Loop Equivalent Circuit Model for Plasma-Induced Damage Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Hiblot and G. Van der Plas

Pulsed Power Science and Technology
Study on Trigger Lifetime of Target Electrode on Laser-Triggered Vacuum Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. He, Z. Huang, Y. Zong, X. Cao, B. Xiang, X. Mao, Y. Zhang, and J. Kong
Experimental Study on Spectral Characteristics of Corona-Generated Audible Noise From a DC Conductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Li, X. Cui, T. Lu, J. Wang, and H. R. Hiziroglu
A Solid-State Converter Topology, −100 kV, 20 A, 1.6 ms, Modulator for High Average Power Klystron Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. Thekkeppat, V. Mandloi, and P. Shrivastava
Method for Self-Resetting of Magnetic Switches in a Magnetic Pulse Compressor Without Additional Reset Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J.-H. Rhee, S.-H. Kim, J.-E. Baek, and K.-C. Ko

Arcs & MHD
Arcing Contact Gap of a 126-kV Horseshoe-Type Bipolar Axial Magnetic Field Vacuum Interrupters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Li, Z. Wang, Y. Geng, Z. Liu, and J. Wang
Arc Appearance and Cathode Spot Distribution in a Long-Gap High-Current Vacuum Arc Controlled by an External Axial Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Tezenas du Montcel, P. Chapelle, C. Creusot, and A. Jardy


Home | Contact & Support | Accessibility | Nondiscrimination Policy | Feedback | Privacy and Opting Out of Cookies

© Copyright 2018 IEEE – All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions. A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.

If you have questions about this mailing, or need assistance, please direct your inquiries to the IEEE Contact Center. Replies to this message do not reach IEEE.

If you would like to be removed from this email distribution, please Response: Unsubscribe from List]. If you have unsubscribed in error, please [Response: Subscribe to List].