T-PS Home | Editorial Board | T-PS in IEEE Xplore | Early Access | Manuscript Submission | ||
OCTOBER 2018 FEATURE ARTICLES - THIS ARTICLE IS OPEN ACCESS FOR A LIMITED TIME | ||
We are pleased to announce that the 2017 Impact Factor for T-PS has increased by 20% and now stands at 1.253! Arc Appearance and Cathode Spot Distribution in a Long-Gap High-Current Vacuum Arc Controlled by an External Axial Magnetic Fieldby B. Tezenas du Montcel, P. Chapelle, C. Creusot, and A. JardyAn experimental study of a high-current vacuum arc generated between two static CuCr25 contacts spaced 20 or 30 mm apart was conducted to characterize the arc appearance and the cathode spot (CS) distribution. The arc was ignited from the lateral surface of the cathode and controlled using an external axial magnetic field. Under the investigated experimental conditions, three distinct arc modes have been observed: multiple arc, diffuse, and diffuse columnar modes. The latter appeared at low B AMF /I arc values, typically below 4 mT/kA. The temporal evolutions of the spot spatial distribution and the associated distribution of the current density were analyzed by processing high-speed video images of the cathode. Various types of distribution depending mainly on current were identified. At low currents (up to 13 kA), the CS distribution covered only a fraction of the cathode surface. At intermediate currents (in 17.2-31.1-kA range), CSs were present on the whole circumference of the cathode and the CS distribution included a closed region without spot. The latter was progressively filled by CSs, yet it totally disappeared before the end of arcing only when its location was off-centered with respect to the cathode axis. At high currents (up to 36.3 kA), the whole cathode surface was occupied by CSs at current peak. The azimuthally averaged radial distribution of the current density was found to be relatively uniform in the regions occupied by CSs. An average spot current of 36.5 ± 2.5 A has been estimated. more... | ||
A PUBLICATION OF THE IEEE NUCLEAR AND PLASMA SCIENCES SOCIETY |
||
OCTOBER 2018 | VOLUME 46 | NUMBER 10 | ITPSBD | (ISSN 0093-3813) | ||
PART I OF TWO PARTS SPECIAL ISSUE ON PULSED POWER SCIENCE AND TECHNOLOGY - 2018 GUEST EDITORIAL SPECIAL ISSUE PAPERS Pulsed Power Technologies System Design and Measurements of a 115-kV/3.5-ms Solid-State Long-Pulse Modulator for the European Spallation Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Jaritz and J. Biela Optimal Design of Medium-Frequency Fe-Based Amorphous Transformer Based on Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Xu, L. Chen, W. Guo, C. Shangguan, J. Zuo, and K. He Design and Development of a Compact All-Solid-State High-Frequency Picosecond-Pulse Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Li, E. Wang, J. Tan, R. Zhang, S. Wang, C. Yao, and Y. Mi Modeling and Construction of Marx Impulse Generator Based on Boost Converter Pulse-Forming Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. M. H. Hosseini, H. R. Ghafourinam, and M. H. Oshtaghi Study on the Impact of Machine Parameter Variations on Performance of Modular Pulsed Alternator Power System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Cui, S. Wang, S. Wu, and X. Li Skin Parameter of Massive Conductors and Transients in Electrical Circuits of Pulsed Power Facilities . . . . . . . . . . . . . . . . . . . . . B. E. Fridman A Compact Explosive-Driven Flux Compression Generator for Reproducibly Generating Multimegagauss Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Zhou, Z. Gu, H. Luo, Y. Tong, X. Tang, F. Tan, J. Zhao, and C. Sun Design Validation of a Single Semiconductor-Based Marx-Generator Stage for Fast Step-Wise Arbitrary Output Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Hochberg, M. Sack, D. Herzog, A. Weisenburger, and G. Mueller Two Compact Coaxial Cable Connectors With Self-Integrating Sensors to Measure Nanosecond Pulse Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Zhao, J.-C. Su, R. Li, B.-X. Yu, B. Zeng, J. Cheng, L. Zheng, Y. Zhang, and X.-D. Xu Comparison of Electrostatic-Field and Transient-Field Distributions for Insulators in Pulsed Power Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Zhao, J. Su, Y. Pan, and X. Zhang A New Open-Loop Synchronization Method Based on Compensation of Phase Deviation for Pulsed Generator Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Ren, H. Ding, Y. Xu, Z. Zhao, L. Chen, Y. Huang, and J. Zhou Development and Test of a 400-kV PFN Marx With Compactness and Rise Time Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F. Lassalle, A. Morell, A. Loyen, T. Chanconie, B. Roques, M. Toury, and R. Vezinet Erosion and Surface Morphology of the Graphite Electrodes in High-Current, High-Coulomb Transfer Gas Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Chen, L. Yang, Z. Liu, D. Huang, and A. Qiu Modular Multilevel Converter Grid Interface for Klystron Modulators: An Augmented Modulation Scheme for Arm Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Jankovic, A. Costabeber, A. Watson, J. C. Clare, and D. Aguglia Marx Generator Prototype for Kicker Magnets Based on SiC MOSFETs . . . . . . . . . . . . . . . . . L. M. Redondo, A. Kandratsyeu, and M. J. Barnes Repetitive High-Voltage Pulse Modulator Using Bipolar Marx Generator Combined With Pulse Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Wang, L. Tong, K. Liu, and Y. Huang Prototype Inductive Adders With Extremely Flat-Top Output Pulses for the Compact Linear Collider at CERN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Holma and M. J. Barnes All Solid-State Rectangular Sub-Microsecond Pulse Generator for Water Treatment Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Rao, Y. Lei, S. Jiang, Z. Li, and J. F. Kolb Modeling and Experimental Study on Multibrick Parallel Discharge Driver Based on PEEC Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Yan, G. Wang, X. Chen, Y. Gou, S. Zhang, Y. Wang, S. Shen, L. Cheng, K. Mei, and W. Ding HV Pulse Transformer Generalized Equivalent Circuit Identification Based on Detailed Mechanical Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Candolfi, P. Viarouge, D. Aguglia, and J. Cros Flexible, Highly Dynamic, and Precise 30-kA Arbitrary Current Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Tsolaridis and J. Biela Compact Power Supply With Integrated Energy Storage and Recovery Capabilities for Arbitrary Currents up to 2 kA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Lampasi, G. Taddia, S. M. Tenconi, and F. Gherdovich Study on the Voltage Maintaining Performance of High Energy Density Capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Yi, H. Li, L. Li, L. Li, Q. Chen, H. Jiang, F. Lin, Q. Zhang, and Y. Liu Theoretical Investigation on Matching Multistage Circular Pulse-Forming Line to Transmission Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Su, R. Li, L. Zhao, J. Cheng, and B. Yu Optimal Design of High-Power Modular Multilevel Active Front-End Converter Using an Innovative Analytical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Zabihinejad and P. Viarouge Pulsed Power Applications Finite-Element Simulation and Experiments on Plastic Heating in the Process of Electromagnetic Pulse Forming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Zhou, J. Tan, C. Yao, C. Li, X. Wang, W. Zhou, and X. Wang Investigation of the Dielectric Breakdown Strength of Vented Li-Ion Electrolyte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. N. Nybeck, D. A. Wetz, Jr., D. A. Dodson, and J. M. Heinzel Effect of Deposition Energy on Underwater Electrical Wire Explosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Li, D. Qian, X. Zou, and X. Wang Ion-Implantation Modification of Surface Flashover Properties in Vacuum of Polytetrafluoroethylene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. Zhao, R. Xu, C. Ren, J. Wang, and P. Yan Effect of Temperature on Breakdown Characteristics of Propylene Carbonate Under Microsecond Pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Liu, Z. Zhang, and H. Liu High-Quality Implosion of Overmassed Z-Pinch in the Experiment With Magnetocumulative Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Repin, A. G. Rep’ev, A. P. Orlov, B. G. Repin, and V. S. Pokrovskiy Influence of Runaway Electrons on the Formation Time of Nanosecond Discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. Y. Kozhevnikov, A. V. Kozyrev, N. S. Semeniuk, and A. O. Kokovin Imaging of Discharge Plasma Channel Evolution Process of Microsecond Wire Explosion in Air . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Yin, X. Li, J. Wu, H. Shi, W. Zhong, and Q. Huang Numerical Study of Magnetically Driven Isentropic Compression Experiments on PTS . . . . . Y. Zhang, Z. Zhang, G. Wang, N. Ding, and C. Xue Radiographic Investigation of Metal-Puff Plasma Jets Generated by Vacuum Arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. G. Rousskikh, A. P. Artyomov, A. S. Zhigalin, A. V. Fedyunin, and V. I. Oreshkin Effect of Mesh Geometry on Power, Efficiency, and Homogeneity of Barrier Discharges in the Presence of Glass Dielectric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E. Gnapowski, S. Gnapowski, and J. Pytka Experimental Study of Multipoint Ignition in Methane–Air Mixtures by Pulsed Microwave Power . . . . . . . . C. Liu, G. Zhang, H. Xie, and L. Deng Design of Ion Pump Power Supply Based on LCC Resonant Converter . . . . . . . . . . . J.-S. Bae, S.-R. Jang, H.-S. Kim, C.-H. Yu, and S.-H. Ahn Some Promises of Magnetic Implosion of High-Velocity Liners in the ALT-3 Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. M. Buyko Oil Extraction From Microalgae by Pulsed Power as a Renewable Source of Energy . . . . . B. Hosseini, A. Guionet, H. Akiyama, and H. Hosano Two Typical Charge Transportation Characteristics in Nanosecond-Pulse Surface Dielectric Barrier Discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Jiang, T. Shao, C. Zhang, P. Yan, and H. Liu Spectrum Analysis for Vacuum Surface Flashover of Different Insulator Materials . . . . . . . . . . . . . . . . . X. Le, W. Meng, L. Feng, and D. Jianjun Fundamental Investigation of Streamer Discharges in Coaxial Reactor for NOx Treatment Using Nanosecond Pulsed Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Omatsu, S. Ishino, K. Teranishi, and N. Shimomura Self-Sustained Plasma-Beam Discharge at High Energy Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. O. Hrechko, N. A. Azarenkov, A. F. Tseluyko, I. V. Babenko, D. L. Riabchikov, and I. N. Sereda Generation of Intense PEFs Using a Prolate Spheroidal Reflector Attached to the Bipolar Former of a 10-GW Pulsed Power Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. M. Novac, R. Xiao, P. Senior, L. Pécastaing, and I. R. Smith Study of Exhaust Air Treatment From a Ship Building Factory Painting Facility Using Pulse Plasma Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H.-S. Jin, S.-H. Song, C.-G. Cho, S.-M. Park, and H.-J. Ryoo Characterization and Statistical Analysis of Breakdown Data for a Corona-Stabilized Switch in Environmentally Friendly Gas Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. W. Macpherson, M. P. Wilson, S. J. MacGregor, I. V. Timoshkin, M. J. Given, and T. Wang Effects of Pulsed Power Control on Plasma Water Treatment Using LTD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Sugai, A. Tokuchi, and W. Jiang Breakdown Characteristics of Plasma Closing Switch Filled With Air, N2, CO2, and Ar/O2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Yao, I. V. Timoshkin, S. J. MacGregor, M. P. Wilson, M. J. Given, and T. Wang Design and Implementation of Novel Series Trigger Circuit for Xenon Flash Lamp Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S.-H. Song, C.-G. Cho, S.-M. Park, H.-I. Park, and H.-J. Ryoo Hardware-in-the-Loop Model Validation of Charging Capacitors With Multipulse Rectifiers for High Rep-Rate Shipboard-Pulsed DC Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. J. McRee, D. A. Wetz, Jr., D. A. Dodson, and J. M. Heinzel Electromagnetic Launchers and Electromagnetic Radiations Power Supply Options for a Naval Railgun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Hundertmark and O. Liebfried Design of an Attractive Force Circuit of Pulsed Power System for Multistage Synchronous Induction Coilgun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M.-G. Song, D.-V. Le, B.-S. Go, M. Park, and I.-K. Yu Design of an Electromagnetic Induction Coilgun Using the Taguchi Method . . . . . . . . . . . . D.-V. Le, B.-S. Go, M.-G. Song, M. Park, and I.-K. Yu Armature Shape Optimization of an Electromagnetic Launcher Including Contact Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Ceylan, M. U. Güdelek, and O. Keysan Electromagnetic Space Launch Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. R. McNab Armature Velocity Control Strategy and System Efficiency Optimization of Railguns . . . . . . . . . . . . . . . . . . . . . . X. Chang, X. Yu, X. Liu, and Z. Li Review of Experiments on Microwave Beam Steering in Arrays of High-Power Oscillators by the Control of Voltage Rise Time . . . . . . . . . . . . . . . V. V. Rostov, I. V. Romanchenko, A. V. Gunin, M. S. Pedos, S. N. Rukin, K. A. Sharypov, S. A. Shunailov, M. R. Ulmaskulov, and M. I. Yalandin Hybrid Nonlinear Transmission Lines Used for RF Soliton Generation . . . . . . . . . . L. P. Silva Neto, J. O. Rossi, J. J. Barroso, and E. Schamiloglu PART II OF TWO PARTS REGULAR PAPERS |
||
Home |
Contact & Support |
Accessibility |
Nondiscrimination Policy |
Feedback |
Privacy and Opting Out of Cookies
© Copyright 2018 IEEE – All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions. A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. If you have questions about this mailing, or need assistance, please direct your inquiries to the IEEE Contact Center. Replies to this message do not reach IEEE. |