T-PS Header
T-NS Home  |   Editorial Board  |   T-NS in IEEE Xplore  |    Early Access  |   Manuscript Submission
AUGUST 2018 FEATURE ARTICLES - THESE ARE OPEN ACCESS FOR A LIMITED TIME

Dosimetry Techniques and Radiation Test Facilities for Total Ionizing Dose Testing

by Federico Ravotti


This paper will address dosimetry and monitoring techniques for total ionizing dose (TID) testing of electronics devices. We will first discuss the basic principles of dosimetry, as well as the most common dosimetric quantities and units, used for the determination of the energy deposited in a given medium by ionizing radiation. In Section III, we will give an overview of the available dosimetry techniques for ionizing radiation, along with the basic mechanisms exploited for their operation. In Section IV, we will address issues and factors affecting the dosimetry measurements, as well as we will give some practical Finally, a synthesis of the existing radiation test facilities, focusing on the one for TID testing, will be given in Section V. Their interest, limitations, and some practical aspects involving the organization of radiation test campaigns will also be discussed in this paper. more...
-----------------------

Evolution of Total Ionizing Dose Effects in MOS Devices With Moore’s Law Scaling

by Daniel M. Fleetwood

The general reduction in the thicknesses of critical dielectric layers driven by Moore’s law scaling has led to increasingly more manageable total-ionizing-dose (TID) response over the last ~50 years. Effects of oxide, interface, and border traps in MOS gate oxides on TID response are now mostly well known for SiO2 gate dielectrics, and the leakage currents due to isolation oxides can be conservatively bounded with existing test methods. Radiation hardened and/or radiation-tolerant technologies have been developed that can survive doses that exceed 1 Mrad(SiO2). Advances in computing technology enabled by Moore’s law scaling and concomitant enhancements in computational techniques have greatly facilitated the modeling and simulation of TID effects in microelectronic devices and ICs. However, the TID response of nanoscale MOS devices with advanced gate stacks and high-K gate dielectrics, and/or alternative materials to Si, is often more complex than for MOS devices with SiO2 gate oxides. TID challenges remain for linear bipolar technologies that exhibit enhanced low-dose-rate sensitivity and for microelectronic devices that must function at doses above ~100 Mrad(SiO2), e.g., in high luminosity accelerator environments. TID effects have also recently been observed in wide bandgap semiconductor devices (e.g., GaN/AlGaN HEMTs) with no gate oxide. more...
-----------------------

Displacement Damage in Silicon Detectors for High Energy Physics

by Michael Moll

In this paper, we review the radiation damage issues caused by displacement damage in silicon sensors operating in the harsh radiation environments of high energy physics experiments. The origin and parameterization of the changes in the macroscopic electrical sensor properties such as depletion voltage, leakage current, and charge collection efficiency as a function of fluence of different particles, annealing time, and annealing temperature are reviewed. The impact of impurities in the silicon base crystal on these changes is discussed, revealing their effects on the degradation of the sensor properties. Differences on how segmented and nonsegmented devices are affected and how device engineering can improve radiation hardness are explained and characterization techniques used to study sensor performance and the electric field distribution inside the irradiated devices are outlined. Finally, recent developments in radiation hardening and simulation techniques using technology computer-aided design modeling are given. This paper concludes with radiation damage issues in presently operating experiments and gives an outlook of radiation-hardened technologies to be used in the future upgrades of the Large Hadron Collider and beyond. more...
-----------------------

Needs, Trends, and Advances in Inorganic Scintillators

by C. Dujardin, E. Auffray, E. Bourret-Courchesne, P. Dorenbos, P. Lecoq, M. Nikl, A. N. Vasil'ev, A. Yoshikawa , and R.-Y. Zhu

This paper presents new developments in inorganic scintillators widely used for radiation detection. It addresses major emerging research topics outlining current needs for applications and material sciences issues with the overall aim to provide an up-to-date picture of the field. While the traditional forms of scintillators have been crystals and ceramics, new research on films, nanoparticles, and microstructured materials is discussed as these material forms can bring new functionality and therefore find applications in radiation detection. The last part of the contribution reports on the very recent evolutions of the most advanced theories, methods, and analyses to describe the scintillation mechanisms. more...
-----------------------

High-Quality Lead Tungstate Crystals for PANDA Produced at CRYTUR

by R. W. Novotny, K.-T. Brinkmann, V. Dormenev, M. Finger, J. Houzvicka, M. Korjik, P. Krist, S. Ochesanu, D. Petrýdes, and H.-G. Zaunick

Lead Tungstate (PbWO 4, PWO) has become presently the most commonly used scintillator material for electromagnetic calorimetry in medium and high-energy physics. There exists substantial demand for future calorimeters such as the completion of the PANDA electromagnetic compatibility (EMC) as well as various detector projects under discussion at Jefferson Lab or Brookhaven National Laboratory in the United States. Nearly, 6700 crystals are missing for the barrel section of the PANDA-EMC since the successful mass production of PWO using the Czochralski method was stopped after bankruptcy of the Bogoroditsk Technical Chemical Plant (BTCP) in Russia. Intermediate research and development efforts with the Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai, China, as an existing producer exploiting the modified Bridgman method could not reach the required quality in a consistent manner. End of 2014, the CRYTUR (Turnov, Czech Republic) has restarted the development of lead tungstate based again on the Czochralski method with impressive progress. The modified and optimized technology has already produced full size samples of PWO-II quality. This paper will present a detailed status report on a first preproduction run of 89 crystals focusing on the achieved optical performance, light yield, kinetics, and temperature dependence and radiation hardness. more...
-----------------------

Optimization of Dopants and Scintillation Fibers’ Diameter of GdAlO3/α-Al2O3 Eutectic for High-Resolution X-Ray Imaging

by Kei Kamada, Nobuhiro Yasui, Yoshihiro Ohashi, Toru Den, Hiroaki Yamaguchi, Akihiro Yamaji, Yasuhiro Shoji, Masao Yoshisno, Kyoung JinKim, Shunsuke Kurosawa, Yuji Ohashi, Yuui Yokota, and Akira Yoshikawa

Submicrometer diameter phase-separated scintillator fibers (PSSFs) were reported and they possessed both the properties of an optical fiber and radiation-to-light conversion. The PSSFs were fabricated using a directionally solidified eutectic system. High-resolution X-ray imaging can be developed using the PSSFs. In this paper, Tb- and Eu-doped GdAlO3 (GAP)/α-Al2 O3 eutectic scintillator was grown by the micro pulling down method with various growth rates in order to achieve the high light output and the high light-guiding efficiency. Relationship between radioluminescence intensity and dopant concentration of Eu and Tb was investigated. At the optimized dopant concentration, relationship between growth rate, eutectic period structure, diameter of PSSFs, and contrast transfer function was investigated to achieve high-resolution X-ray imaging. more...
-----------------------

First Assessment of ENDF/B-VIII and EPICS Atomic Data Libraries

by Min Cheol Han, Maria Grazia Pia, Paolo Saracco, and Tullio Basaglia

This paper reports an extensive assessment of widely used evaluated atomic data libraries released in ENDF/B-VIII.0 and in EPICS2017 in early 2018. The new versions are intended to replace the data libraries currently used by major Monte Carlo particle transport codes to model electron and photon interactions with matter, which date back to the 1990s. The evaluation is performed from a user perspective and concerns various characteristics of the data, including their intrinsic consistency, the differences across their various formats and distribution sources, and the effects on computational performance associated with their use. The results of the tests demonstrate the impact of using the new data libraries in a Monte Carlo simulation environment and highlight some opportunities for improvement in future versions. more...
-----------------------

A PUBLICATION OF THE IEEE NUCLEAR AND PLASMA SCIENCES SOCIETY

AUGUST 2018   |  VOLUME 65  |  NUMBER 8  |  IETNAE  |  (SSN 0018-9499)
PART I OF THREE PARTS

SELECTED PAPERS FROM THE 2017 CONFERENCE ON RADIATION AND ITS EFFECTS ON
COMPONENTS AND SYSTEMS (RADECS), Geneva, Switzerland, October 2–6, 2017

EDITORIAL
Comments by the Editors . . . . . . . . . . . . . . D. M. Fleetwood, D. Brown, S. Girard, S. Gerardin, H. Quinn, I. S. Esqueda, W. Robinson, S. Moss
List of Reviewers


Dosimetry Techniques and Radiation Test Facilities for Total Ionizing Dose Testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F. Ravotti
Evolution of Total Ionizing Dose Effects in MOS Devices With Moore’s Law Scaling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .D. M. Fleetwood
Dose-Rate Sensitivity of 65-nm MOSFETs Exposed to Ultrahigh Doses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . G. Borghello, F. Faccio, E. Lerario, S. Michelis, S. Kulis, D. M. Fleetwood, R. D. Schrimpf, S. Gerardin, A. Paccagnella, and S. Bonaldo
Improved Model for Excess Base Current in Irradiated Lateral p-n-p Bipolar Junction Transistors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. S. Tolleson, P. C. Adell, B. Rax, H. J. Barnaby, A. Privat, X. Han, A. Mahmud, and I. Livingston
Impact of Heavy Ion Energy on Charge Yield in Silicon Dioxide. . . . . . . . . . . . . . . . . . . . . . . . . V. V. Emeliyanov, A. S. Vatuev, and R. G. Useinov
Total Ionizing Dose Response and Annealing Behavior of Bulk nFinFETs With ON-State Bias Irradiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Yang, Q. Zhang, Y. Huang, Z. Zheng, B. Li, B. Li, X. Zhang, H. Zhu, H. Yin, Q. Guo, J. Luo, and Z. Han
Radiation Effects on Deep Submicrometer SRAM-Based FPGAs Under the CERN Mixed-Field Radiation Environment. . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . G. Tsiligiannis, S. Danzeca, R. García Alía, A. Infantino, A. Lesea, M. Brugger, A. Masi, S. Gilardoni, and F. Saigné
X-Ray and Proton Radiation Effects on 40 nm CMOS Physically Unclonable Function Devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. F. Wang, E. X. Zhang, K. H. Chuang, W. Liao,
      H. Gong, P. Wang, C. N. Arutt, K. Ni, M. W. McCurdy, I. Verbauwhede, E. Bury, D. Linten, D. M. Fleetwood, R. D. Schrimpf,  and  R. A. Reed

TID Response of pMOS Nanowire Field-Effect Transistors: Geometry and Bias Dependence. . . . . . . . . . . . . . . . . . . . . . J. Riffaud, M. Gaillardin,
     . . . . C. Marcandella, N. Richard, O. Duhamel, M. Martinez, M. Raine, P. Paillet, T. Lagutere, F. Andrieu, S. Barraud, M. Vinet, and O. Faynot

An Effective Method to Compensate Total Ionizing Dose-Induced Degradation on Double-SOI Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Y. Huang, B. Li, X. Zhao, Z. Zheng, J. Gao, G. Zhang, B. Li, G. Zhang, K. Tang, Z. Han, and J. Luo
Electrons in GEO Measured With the ESA Multifunctional Spectrometer During the January 2014 SEP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . L. Arruda, P. Gonçalves, F. Carvalho, A. Marques, J. C. Pinto, A. Aguilar, P. Marinho, T. Sousa, H. Evans, and P. Nieminen
High-Energy Electrons in the Inner Zone. . . . . . . . . . . . . . . . . . . D. Boscher, S. Bourdarie, V. Maget, A. Sicard, G. Rolland, and D. Standarovski
A Method to Separate Proton Damage in LED and Phototransistor of Optocouplers. . . . . . . F. Irom, L. D. Edmonds, G. R. Allen, and B. G. Rax
Displacement Damage in Silicon Detectors for High Energy Physics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Moll
Ultrahigh Fluence Radiation Monitoring Technology for the Future Circular Collider at CERN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . G. Gorine, G. Pezzullo, I. Mandic, A. Jazbec, L. Snoj, M. Capeans, M. Moll, D. Bouvet, F. Ravotti, and J.-M. Sallese
Radioluminescence and Optically Stimulated Luminescence Responses of a Cerium-Doped Sol-Gel Silica Glass Under X-Ray Beam
      Irradiation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. Al Helou,
      H. El Hamzaoui, B. Capoen, G. Bouwmans, A. Cassez, Y. Ouerdane, A. Boukenter, S. Girard, G. Chadeyron, R. Mahiou, and M. Bouazaoui

6-MeV Electron Exposure Effects on OFDR-Based Distributed Fiber-Based Sensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Sabatier, S. Rizzolo, A. Morana, T. Allanche, T. Robin, B. Cadier, P. Paillet,
    M. Gaillardin, O. Duhamel, C. Marcandella, D. Aubert, G. Assaillit, G. Auriel, A. Boukenter, Y. Ouerdane, L. Mescia, E. Marin, and S. Girard

Ni-Ion and γ -Ray Irradiated Silica-Based Glasses Characterized by Luminescence and Raman Spectroscopies. . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Alessi, S. Girard, M. Raine,
      M. Fanetti, D. Di Francesca, L. Martin-Samos, I. Reghioua, M. Gaillardin, N. Richard, P. Paillet, M. Valant, A. Boukenter, and Y. Ouerdane

Growth and Decay Kinetics of Radiation-Induced Attenuation in Bulk Optical Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . S. Girard, T. Allanche, P. Paillet, V. Goiffon, M. Van Uffelen, L. Mont-Casellas, C. Muller, A. Boukenter, Y. Ouerdane, and W. De Cock
Dependence of the Voids-Fiber Bragg Grating Radiation Response on Temperature, Dose, and Dose Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . A. Morana, S. Girard, E. Marin, M. Lancry, J. Grelin, C. Marcandella, P. Paillet, A. Boukenter, and Y. Ouerdane
Investigation of the Influence of Temperature and Annealing on the Radiation Hardness of Silicon Mach–Zehnder Modulators. . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Kraxner, S. Detraz, L. Olantera, C. Scarcella, C. Sigaud, C. Soos, J. Troska, and F. Vasey
X-Ray, Proton, and Electron Radiation Effects on Type I Fiber Bragg Gratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Blanchet, A. Morana, T. Allanche, C. Sabatier, I. Reghioua, E. Marin, A. Boukenter,
    Y. Ouerdane, P. Paillet, M. Gaillardin, O. Duhamel, C. Marcandella, M. C. Trinczek, G. Assaillit, G. Auriel, D. Aubert, G. Laffont, and S. Girard

Distributed Optical Fiber Radiation Sensing in the Proton Synchrotron Booster at CERN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . D. Di Francesca, I. Toccafondo, G. Li Vecchi, S. Calderini, S. Girard, A. Alessi, R. Ferraro, S. Danzeca, Y. Kadi, and M. Brugger
Radiation-Induced Defects in 8T-CMOS Global Shutter Image Sensor for Space Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Le Roch, C. Virmontois, V. Goiffon, L. Tauziède, J.-M. Belloir, C. Durnez, and P. Magnan
Random Telegraph Signal in Proton Irradiated Single-Photon Avalanche Diodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F. Di Capua, M. Campajola, L. Campajola, C. Nappi, E. Sarnelli, L. Gasparini, and H. Xu
Qualification Strategy of New Technologies for Safety Instrumentation in Harsh Radiation Environments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Zinoni, L. Janvier, and B. Symoens
Radiation Tolerance of Proton-Irradiated LGADs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Otero Ugobono,
      M. Carulla,    M. Centis Vignali,    M. Fernández García,   C. Gallrapp,   S. Hidalgo Villena,   I. Mateu,   M. Moll,   G. Pellegrini,   and   I. Vila

In-Flight Dark Current Nonuniformity Used for Space Environment Model Benchmarking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Inguimbert, S. Bourdarie, M. Beaumel, M. C. Ursule, and R. Ecoffet
Electron Environment Characteristics and Internal Charging Evaluation for MEO Satellite. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J.-Z. Wang, Y.-Q. Hu, D.-Y. Yu, Z.-B. Cai, and Q.-X. Zhang
System Level Radiation Characterization of a 1U CubeSat Based on CERN Radiation Monitoring Technology. . . . . . . . . . . . . . . . . . R. Secondo,
     R. García Alía,   P. Peronnard,   M. Brugger,   A. Masi,   S. Danzeca,   A. Merlenghi,  E. Chesta,  J. R. Vaillè,  M. Bernard,  and   L. Dusseau

ReadMON: A Portable Readout System for the CERN PH-RADMON Sensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. Mateu, M. Glaser, G. Gorine, M. Moll, G. Pezzullo, and F. Ravotti
Single-Event Effects in the Peripheral Circuitry of a Commercial Ferroelectric Random Access Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. L. Bosser, V. Gupta, A. Javanainen, G. Tsiligiannis,
      S. D. LaLumondiere,   D. Brewe,   V. Ferlet-Cavrois,   H. Puchner,   H. Kettunen,   T. Gil,   F. Wrobel,   F. Saigné,   A. Virtanen,  and  L. Dilillo

Mechanisms of Electron-Induced Single-Event Upsets in Medical and Experimental Linacs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Tali, R. García Alía, M. Brugger, V. Ferlet-Cavrois,
      R. Corsini, W. Farabolini, A. Javanainen, M. Kastriotou, H. Kettunen, G. Santin, C. Boatella Polo, G. Tsiligiannis, S. Danzeca, and A. Virtanen

Experimental Validation of an Equivalent LET Approach for Correlating Heavy-Ion and Laser-Induced Charge Deposition. . . . . . . . . . J. M. Hales,
      A. Khachatrian,  S. Buchner,  N. J.-H. Roche,  J. Warner,  Z. E. Fleetwood,  A. Ildefonso,  J. D. Cressler,  V. Ferlet-Cavrois, and D. McMorrow

Measurement and Mechanism Investigation of Negative and Positive Muon-Induced Upsets in 65-nm Bulk SRAMs . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . W. Liao, M. Hashimoto, S. Manabe, Y. Watanabe, S.-I. Abe, K. Nakano, H. Sato, T. Kin, K. Hamada, M. Tampo, and Y. Miyake
Negative and Positive Muon-Induced Single Event Upsets in 65-nm UTBB SOI SRAMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . S. Manabe, Y. Watanabe, W. Liao, M. Hashimoto, K. Nakano, H. Sato, T. Kin, S.-I. Abe, K. Hamada, M. Tampo, and Y. Miyake
SEE Testing in the 24-GeV Proton Beam at the CHARM Facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . R. García Alía, M. Brugger, M. Cecchetto, F. Cerutti, S. Danzeca, M. Delrieux, M. Kastriotou, M. Tali, and S. Uznanski
Physical Mechanisms Inducing Electron Single-Event Upset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. Caron, C. Inguimbert, L. Artola, N. Chatry, N. Sukhaseum, R. Ecoffet and F. Bezerra
Single Events Induced By Heavy Ions and Laser Pulses in Silicon Schottky Diodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . .M. Mauguet, D. Lagarde, F. Widmer, N. Chatry, X. Marie, E. Lorfevre, F. Bezerra, R. Marec, and P. Calvel
Impact of D-Flip-Flop Architectures and Designs on Single-Event Upset Induced by Heavy Ions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Artola, G. Hubert, S. Ducret, J. Mekki, A. Al Youssef, and N. Ricard
Lockstep Dual-Core ARM A9: Implementation and Resilience Analysis Under Heavy Ion-Induced Soft Errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . Á. B. de Oliveira, G. S. Rodrigues, F. L. Kastensmidt, N. Added, E. L. A. Macchione, V. A. P. Aguiar, N. H. Medina, and M. A. G. Silveira
Heavy Ion, Proton, and Neutron Charge Deposition Analyses in Several Semiconductor Materials. . . . . . . . . . . . . . . . . . . . . . Z. Wu and S. Chen
Impact of Thermal and Intermediate Energy Neutrons on SRAM SEE Rates in the LHC Accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Cecchetto, R. García Alía, S. Gerardin, M. Brugger, A. Infantino, and S. Danzeca
Effect of Transistor Variants on Single-Event Transients at the 14-/16-nm Bulk FinFET Technology Generation. . . . . . . . . . . . . . . . . . . . . . . . . . . .
      R. C. Harrington, J. A. Maharrey, J. S. Kauppila, P. Nsengiyumva, D. R. Ball, T. D. Haeffner, E. X. Zhang, B. L. Bhuva,  and  L. W. Massengill
Radiation-Hardened Flip-Flops With Low-Delay Overhead Using pMOS Pass-Transistors to Suppress SET Pulses in a 65-nm
     FDSOI Process
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Yamada, H. Maruoka, J. Furuta, and K. Kobayashi
Analysis of Temporal Masking Effects on Master- and Slave-Type Flip-Flop SEUs and Related Applications. . . . . . . . . . . . . . . . . . . . R. M. Chen,
      N. N. Mahatme, Z. J. Diggins, L. Wang, E. X. Zhang, Y. P. Chen, Y. N. Liu, B. Narasimham, A. F. Witulski, B. L. Bhuva, and D. M. Fleetwood

Atmospheric-Like Neutron Attenuation During Accelerated Neutron Testing With Multiple Printed Circuit Boards. . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Cazzaniga, B. Bhuva, M. Bagatin, S. Gerardin, N. Marchese, and C. D. Frost
Evaluation of the Suitability of NEON SIMD Microprocessor Extensions Under Proton Irradiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Lindoso, M. García-Valderas, L. Entrena, Y. Morilla, and P. Martín-Holgado
On the Efficacy of ECC and the Benefits of FinFET Transistor Layout for GPU Reliability. . . . . . . . . C. Lunardi, F. Previlon, D. Kaeli, and P. Rech
Contribution of Thermal Neutrons to Soft Error Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Weulersse, S. Houssany, N. Guibbaud, J. Segura-Ruiz, J. Beaucour, F. Miller, and M. Mazurek
SEU Characterization of Three Successive Generations of COTS SRAMs at Ultralow Bias Voltage to 14.2-MeV Neutrons. . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . J. A. Clemente, G. Hubert, J. Fraire, F. J. Franco, F. Villa, S. Rey, M. Baylac, H. Puchner, H. Mecha, and R. Velazco
Power-Aware SE Analysis of Different FF Designs at the 14-/16-nm Bulk FinFET CMOS Technology Node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .H. Jiang, H. Zhang, I. Chatterjee, J. S. Kauppila, B. L. Bhuva, and L. W. Massengill
Dual-Interlocked Logic for Single-Event Transient Mitigation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. A. Maharrey,
      J. S. Kauppila, R. C. Harrington, P. Nsengiyumva, D. R. Ball, T. D. Haeffner, E. X. Zhang, B. L. Bhuva, W. T. Holman, and L. W. Massengill

SEE Error-Rate Evaluation of an Application Implemented in COTS Multicore/ Many-Core Processors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .P. Ramos, V. Vargas, M. Baylac, N.-E. Zergainoh, and R. Velazco
Thermal Neutron SRAM Detector Characterization at the CERN Mixed-Field Facility, CHARM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .C. Cangialosi, S. Danzeca, M. Brucoli, M. Brugger, and A. Masi
Analysis and Modeling of the Charge Collection Mechanism in 28-nm FD-SOI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. Correas, I. Nofal, J. Cerba, F. Monsieur, G. Gasiot, D. Alexandrescu, P. Roche, and R. Gonella
The Impact of Multiple-Cell Charge Generation on Multiple-Cell Upset in a 20-nm Bulk SRAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Kato, T. Yamazaki, K. Maruyama, T. Soeda, H. Itsuji, D. Kobayashi, K. Hirose, and H. Matsuyama
Experimental Investigation of the Joint Influence of Reduced Supply Voltage and Charge Sharing on Single-Event Transient Waveforms in
      65-nm Triple-Well CMOS
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Mitrović, M. Hofbauer, K.-O. Voss, and H. Zimmermann
Circuit-Level Layout-Aware Modeling of Single-Event Effects in 65-nm CMOS ICs. . . . . . . . . . A. O. Balbekov, M. S. Gorbunov, and G. I. Zebrev
The Increased Single-Event Upset Sensitivity of 65-nm DICE SRAM Induced by Total Ionizing Dose. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Q. Zheng, J. Cui, W. Lu, H. Guo, J. Liu, X. Yu, Y. Wei, L. Wang, J. Liu, C. He, and Q. Guo
Effects of Total-Ionizing-Dose Irradiation on Single-Event Response for Flip-Flop Designs at a 14-/16-nm Bulk FinFET Technology Node. . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Zhang, H. Jiang, X. Fan, J. S. Kauppila, I. Chatterjee, B. L. Bhuva, and L. W. Massengill
Reliability–Performance Analysis of Hardware and Software Co-Designs in SRAM-Based APSoCs. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . L. Antunes Tambara, F. L. Kastensmidt, P. Rech, F. Lins, N. H. Medina, N. Added, V. A. P. Aguiar, and M. A. G. Silveira
Design of a Radiation Hardened Power-ON-Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . E. López-Morillo, F. R. Palomo, F. Márquez, and F. Muñoz
Single-Event Burnout Mechanisms in SiC Power MOSFETs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . A. F. Witulski, D. R. Ball, K. F. Galloway, A. Javanainen, J.-M. Lauenstein, A. L. Sternberg, and R. D. Schrimpf
Single-Event Damage Observed in GaN-on-Si HEMTs for Power Control Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E. Mizuta, S. Kuboyama, Y. Nakada, A. Takeyama, T. Ohshima, Y. Iwata, and K. Suzuki
Degradation of KNN-Based Lead-Free Piezoelectric Material Under Gamma Irradiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .G. Dai, Y. Du, Q. Zhou, L. Zhong, X. Sun, K. Wang, and J. Zhang


Conference Author Index


PART II OF THREE PARTS


14TH INTERNATIONAL CONFERENCE ON INORGANIC SCINTILLATORS AND THEIR APPLICATIONS
(SCINT 2017) Chamonix, France, September 17–22, 2017


EDITORIAL
Conference Comments by the Editors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . E. Auffray, M. Nikl, V. Nagirnyi, J. Bárta, A. Belski, E. Bourret-Courchesne, F. Moretti, J. Pejchal, and G. Tamulaitis


INTRODUCTORY REVIEW
Needs, Trends, and Advances in Inorganic Scintillators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . C. Dujardin, E. Auffray, E. Bourret-Courchesne, P. Dorenbos, P. Lecoq, M. Nikl, A. N. Vasil’ev, A. Yoshikawa, and R.-Y. Zhu


INSTRUMENTATION AND APPLICATIONS
High-Quality Lead Tungstate Crystals for PANDA Produced at CRYTUR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . R. W. Novotny, K.-T. Brinkmann, V. Dormenev, M. Finger, J. Houzvicka, M. Korjik, P. Krist, S. Ochesanu, D. Petrýdes, and H.-G. Zaunick
The CMS ECAL Upgrade for Precision Crystal Calorimetry at the HL-LHC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Jofrehei
Calibration and Status of the 3-D Imaging Calorimeter of DAMPE for Cosmic Ray Physics on Orbit . . . . . . . . . . . . . . . . . . L. Wu, S. Wen, C. Liu,
   H. Dai, Y. Wei, Z. Zhang, X. Wang, Z. Xu, C. Feng, S. Liu, Q. An, Y. Zhang, G. Huang, Y. Wang, C. Yue, J. Zang, J. Guo, J. Wu, and J. Chang

Development of SiPM-Based X-Ray Counting Scanner for Human Inspection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . D. Philippov, E. Popova, S. Vinogradov, A. Stifutkin, A. Pleshko, S. Klemin, A. Ilyin, V. Belyaev, D. Besson, and M. Vandychev
Application of a LaBr3(Ce) Scintillation Detector to an Environmental Radiation Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y.-Y. Ji, H.-Y. Choi, W. Lee, C.-J. Kim, H.-S. Chang, and K.-H. Chung
Performance of the Prototype of the Charged-Particle Veto System of the PADME Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F. Ferrarotto,
     L. Foggetta,   G. Georgiev,   P. Gianotti,   V. Kozhuharov,   E. Leonardi,   G. Piperno,   M. Raggi,    C. Taruggi,    L. Tsankov,    and    P. Valente

Optimization of Dopants and Scintillation Fibers’ Diameter of GdAlO3/α-Al2O3 Eutectic for High-Resolution X-Ray Imaging. . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Kamada,
      N. Yasui, Y. Ohashi, T. Den, H. Yamaguchi, A. Yamaji, Y. Shoji, M. Yoshisno, K. JinKim, S. Kurosawa, Y. Ohashi, Y. Yokota, and A. Yoshikawa

A Study of 48deplCa100MoO4 Scintillation Crystals for the AMoRE-I Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Y. Lee, P. Aryal, S. Karki, H. J. Kim, S. K. Kim, Y. D. Kim, M. H. Lee, and C. W. Park
Radiation Damage Tests on Diamond and Scintillation Detector Components for the ITER Radial Neutron Camera . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . S. Baccaro, A. Cemmi, I. Di Sarcina, B. Esposito, G. Ferrara, A. Grossi, M. Montecchi, S. Podda, F. Pompili, L. Quintieri, and M. Riva
Scintillating Fiber Devices for Particle Therapy Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . I. Mattei, G. Battistoni, M. De Simoni, Y. Dong, A. Embriaco, M. Fischetti, V. Giacometti, E. Gioscio, M. Magi, C. Mancini-Terracciano,
     M. Marafini,   R. Mirabelli,   S. Muraro,   A. Sarti,   A. Sciubba,   E. S. Solfaroli Camillocci,   M. Toppi,   G. Traini,   S. M. Valle,   and   V. Patera

Evaluation of ZnS:6LiF and ZnO:6LiF Scintillation Neutron Detectors Readout With SiPMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Hildebrandt, J.-B. Mosset, and A. Stoykov
Predicting the Performance of the CMS Precision PbWo4 Electromagnetic Calorimeter in the HL-LHC Era From Test Beam Results on
      Irradiated Crystals
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Zghiche
Design and Status of the Mu2e Crystal Calorimeter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . N. Atanov, V. Baranov,
     J. Budagov,   Y. I. Davydov,   V. Glagolev,   V. Tereshchenko,   Z. Usubov,  F. Cervelli,   S. Di Falco,  S. Donati,   L. Morescalchi,  E. Pedreschi,
     G. Pezzullo,  F. Raffaelli,  F. Spinella,  F. Colao,  M. Cordelli,  G. Corradi,  E. Diociaiuti,  R. Donghia,  S. Giovannella, F. Happacher, M. Martini,
     S. Miscetti, M. Ricci, A. Saputi, I. Sarra, B. Echenard, D. G. Hitlin, T. Miyashita, F. Porter, R.-Y. Zhu, F. Grancagnolo, G. Tassielli, and P. Murat

Comparative Study of GdLu2Al2Ga3O12:Ce and GdY2Al2Ga3O12:Ce Scintillation Crystals for γ -Ray Detection. . . . . . . . . . . . . . . . . . . . . . . . .
      . . . O. Sakthong, W. R. Chewpraditkul, W. Chewpraditkul, T. Szczesniak, L. Swiderski, M. Moszynski, K. Kamada, A. Yoshikawa, and M. Nikl

FUNDAMENTALS, PHYSICAL MECHANISMS, THEORIES
Afterglow and Quantum Tunneling in Ce-Doped Lutetium Aluminum Garnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . .. . . E. Mihóková, V. Babin, J. Pejchal, V. ˇCuba, J. Bárta, K. Popovich, L. S. Schulman, A. Yoshikawa, and M. Nikl
Temperature Quenching of Radio- and Photoluminescence of Y3(Ga,Al)5O12:Ce3+ and Gd3(Ga,Al)5O12:Ce3+ Garnet Ceramics. . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. D. Venevtsev, V. Khanin, P. A. Rodnyi, H. Wieczorek, and C. Ronda
Ultrafast Inorganic Scintillators for Gigahertz Hard X-Ray Imaging. . . . . . . . . . . C. Hu, L. Zhang, R.-Y. Zhu, A. Chen, Z. Wang, L. Ying, and Z. Yu
Reduced Afterglow Codoped CsI:Tl for High-Energy Imaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . S. R. Miller, H. B. Bhandari, P. Bhattacharya, C. Brecher, J. Crespi, A. Couture, C. Dinca, M. Rommel, and V. V. Nagarkar
Efficiency Studies on Gd3Ga3Al2O12:Ce Scintillators: Simulations and Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Rawat, M. Tyagi, G. A. Kumar, and S. C. Gadkari

MATERIALS PREPARATION AND CHARACTERIZATION - OXIDES
Novel All-Solid-State Composite Scintillators Based on the Epitaxial Structures of LuAG Garnet Doped With Pr, Sc, and Ce Ions. . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Witkiewicz-Lukaszek,
     V. Gorbenko,     T. Zorenko,     K. Paprocki,     O. Sidletskiy,     I. Gerasymov,     J. A. Mares,     R. Kucerkova,     M. Nikl,     and     Y. Zorenko

Growth and Optical Properties of a Cs2Mo2O7 Single Crystal . . . . . . . . . . . . . . . . . . . J. K. Son, I. R. Pandey, H. J. Kim, Y. D. Kim, and M. H. Lee
Luminescence and Scintillation Properties of Novel Disodium Dimolybdate (Na2Mo2O7) Single Crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..I. R. Pandey, S. Karki, H. J. Kim, Y. D. Kim, M. H. Lee, and N. V. Ivannikova
Scintillation Characteristics of GAGG:Ce Single-Crystalline Films Grown by Liquid Phase Epitaxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. Chewpraditkul, W. R. Chewpraditkul, N. Yawai, K. Wantong, M. Kucera, Z. Lucenicova, and M. Nikl
Comprehensive Study on Ce-Doped (Gd, La)2Si2O7 Scintillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Kurosawa,
      T. Horiai,  R. Murakami,  Y. Shoji,  P. Jan,  A. Yamaji,  S. Kodama, Y. Ohashi, Y. Yokota, K. Kamada, A. Yoshikawa, A. Ohnishi, and M. Kitaura

Scintillation Powders for the Detection of Neutrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Fiserova and J. Janda

MATERIALS PREPARATION AND CHARACTERIZATION - HALIDES AND OTHER
Slow Scintillation Suppression in Yttrium Doped BaF2 Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Chen, F. Yang, L. Zhang, R.-Y. Zhu, Y. Du, S. Wang, S. Sun, and X. Li
Scintillation Properties of TlGd2Cl7 (Ce3+) Single Crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Khan, G. Rooh, H. J. Kim, and S. Kim
Tl2GdCl5 (Ce3+): A New Efficient Scintillator for X- and γ -Ray Detection. . . . . . . . . . . . . . . . . . G. Rooh, A. Khan, H. J. Kim, H. Park, and S. Kim
Lithium-Loaded Scintillators Coupled to a Custom-Designed Silicon Photomultiplier Array for Neutron and Gamma-Ray Detection. . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..F. Liang, H. Brands, L. Hoy, J. Preston, and J. Smith
Growth and Luminescent Properties of Cs2HfCl6 Scintillators Doped With Alkaline Earth Metals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . S. Kodama, S. Kurosawa, J. Pejchal, R. Král, A. Yamaji, Y. Ohashi, Y. Yokota, K. Kamada, M. Nikl, and A. Yoshikawa
Growth and Characterization of SrI2:Eu Crystals Fabricated by the Czochralski Method. . . . E. Galenin, O. Sidletskiy, C. Dujardin, and A. Gektin
Scintillation Efficiency and Position Sensitivity for Radiation Events in Plastic Scintillators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. N. T. Tran, S. Sasaki, T. Sanami, Y. Kishimoto, and E. Shibamura

NOVEL AND NANO
Photoinduced Preparation of Bandgap-Engineered Garnet Powders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Bárta, V. Čuba, V. Jarý, A. Beitlerová, D. Pánek, T. Parkman, and M. Nikl
Photonic Crystal Slabs Applied to Inorganic Scintillators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . M. Salomoni, R. Pots, P. Lecoq, E. Auffray, S. Gundacker, M. Paganoni, B. Singh, M. Marshall, and V. V. Nagarkar
Structural, Optical, and Luminescent Properties of ZnO:Ga and ZnO:In Ceramics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . K. A. Chernenko, E. I. Gorokhova, S. B. Eron’ko, A. V. Sandulenko, I. D. Venevtsev, H. Wieczorek, and P. A. Rodnyi
Noninvasive Inspection of Anisotropic Crystals: Innovative Photoelasticity-Based Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. P. Natali, L. Montalto, D. Rinaldi, F. Davì, N. Paone, and L. Scalise
Light Spread Manipulation in Scintillators Using Laser Induced Optical Barriers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Bläckberg, M. Moebius, G. El Fakhri, E. Mazur, and H. Sabet
Scintillators in High-Power Laser-Driven Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . Tarisien, J. L. Henares, C. Baccou, T. Bonnet, F. Boulay,
      F. Gobet,  M. Gugiu,  F. Hannachi,  S. Kisyov,  C. Manailescu,  V. Meot,  F. Negoita,  X. Raymond,  G. Revet,  L. Tudor,   and   M. Versteegen


Conference Author Index


PART III OF THREE PARTS


REGULAR PAPERS
ACCELERATOR TECHNOLOGY
RF Transient Analysis and Stabilization of the Phase and Energy of the Proposed PIP-II LINAC. . . . . . . . . . . . . . . J. P. Edelen and B. E. Chase
Electromagnetic Design of Microwave Cavities for Side-Coupled Linear Accelerators: A Hybrid Numerical/Analytical Approach. . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Laneve, M. C. Falconi, M. Bozzetti, G. Rutigliani, R. A. Prisco, V. Dimiccoli, and F. Prudenzano


NUCLEAR POWER INSTRUMENTATION AND CONTROL
Compressed Sensing Artificial Neural Network for Reactor Core Flux Mapping. . . . . . . . . . .S. K. Bahuguna, S. Mukhopadhyay, and A. P. Tiwari


RADIATION EFFECTS
TCAD Simulation of Single-Event-Transient Effects in L-Shaped Channel Tunneling Field-Effect Transistors. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Q. Wang, H. Liu, S. Wang, and S. Chen
Total-Ionizing-Dose Effects on Al/SiO2 Bimorph Electrothermal Microscanners . . . . . . . . . . . . . . . . . . . . . . . . . . W. Liao, E. X. Zhang, M. L. Alles,
       A. L. Sternberg,  C. N. Arutt,  D. Wang,  S. E. Zhao,  P. Wang,  M. W. McCurdy,  H. Xie,  D. M. Fleetwood,  R. A. Reed,  and  R. D. Schrimpf

RADIATION INSTRUMENTATION
First Assessment of ENDF/B-VIII and EPICS Atomic Data Libraries. . . . . . . . . . . . . . . . . . . . . M. C. Han, M. G. Pia, P. Saracco, and T. Basaglia
Validation of Shell Ionization Cross Sections for Monte Carlo Electron Transport. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . .. . T. Basaglia, M. Bonanomi, F. Cattorini, M. C. Han, G. Hoff, C. H. Kim, S. H. Kim, M. Marcoli, M. G. Pia, and P. Saracco
Transparent Ceramic Garnet Gamma-Ray Spectrometer With Directionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . E. L. Swanberg, N. J. Cherepy, B. M. Wihl, P. R. Beck, Z. M. Seeley, S. L. Hunter, S. E. Fisher, S. A. Payne, and J. Kindem
Theoretical and Experimental Investigation of Gating Performance of Subnanosecond Image IntensifierWith Microstrip Photocathode. . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .M. Zhang, L. Sheng, H. Hu, Y. Li, Y. Liu, D. Hei, B. Peng, and J. Zhao
Development of a Portable Muography Detector for Infrastructure Degradation Investigation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Chaiwongkhot, T. Kin, H. Ohno, R. Sasaki, Y. Nagata, K. Kondo, and Y. Watanabe
Postgrowth Annealing of MOVPE-Grown Single-Crystal CdTe Epilayers on (211) Si Substrates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Niraula, K. Yasuda, J. Ozawa, T. Yamaguchi, S. Tsubota, T. Mori, and Y. Agata
Thallium Bromide Semiconductor Radiation Detectors With Thallium Contacts. . . . . . . . . . . . . . . . . . . . . . . . . A. Datta, P. Becla, and S. Motakef
Two-Step Annealing to Remove Te Secondary-Phase Defects in CdZnTe While Preserving the High Electrical Resistivity. . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Kim, S. Hwang, H. Yu, Y. Choi, Y. Yoon, A. E. Bolotnikov, and R. B. James

REAL TIME SYSTEMS
New Updates on the ATLAS ROD Board Implementation for Pixel Layers 1 and 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. Giangiacomi, G. Balbi, A. Damilano, D. Falchieri, A. Gabrielli, L. Lama, and R. Travaglini
Design and Implementation of the Resonant Magnetic Perturbations Feedback Control System for Tearing Mode Suppression on J-TEXT. . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. Zheng, F. Hu, M. Zhang, D. Li, Q. Hu, H. Jin, B. Rao, M. Yan, Y. Pan, and K. Yu
A Calculation Software for 4πβ–γ Coincidence Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z.-G. Ding, K.-Z. Song, M. Zhang, Z.-J. Yang, J.-C. Liang, H.-R. Liu, K. Zhong, and Z. Tu
The Central Control System for KTX . . . . . . . . . . . . . . . . . . . Z. Zhang, B. Xiao, F. Wang, Z. Ji, Y. Wang, P. Wang, Z. Xu, T. Lan, H. Li, and W. Liu


Home | Contact & Support | Accessibility | Nondiscrimination Policy | Feedback | Privacy and Opting Out of Cookies

© Copyright 2018 IEEE – All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions. A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.

If you have questions about this mailing, or need assistance, please direct your inquiries to the IEEE Contact Center. Replies to this message do not reach IEEE.

If you would like to be removed from this email distribution, please Response: Unsubscribe from List]. If you have unsubscribed in error, please [Response: Subscribe to List].