EDITORIAL
Comments by the Editors . . . . . . . . . . . . . . D. M. Fleetwood, D. Brown, S. Girard, S. Gerardin, H. Quinn, I. S. Esqueda, W. Robinson, S. Moss
List of Reviewers
Dosimetry Techniques and Radiation Test Facilities for Total Ionizing Dose Testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F. Ravotti
Evolution of Total Ionizing Dose Effects in MOS Devices With Moore’s Law Scaling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .D. M. Fleetwood
Dose-Rate Sensitivity of 65-nm MOSFETs Exposed to Ultrahigh Doses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . G. Borghello, F. Faccio, E. Lerario, S. Michelis, S. Kulis, D. M. Fleetwood, R. D. Schrimpf, S. Gerardin, A. Paccagnella, and S. Bonaldo
Improved Model for Excess Base Current in Irradiated Lateral p-n-p Bipolar Junction Transistors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. S. Tolleson, P. C. Adell, B. Rax, H. J. Barnaby, A. Privat, X. Han, A. Mahmud, and I. Livingston
Impact of Heavy Ion Energy on Charge Yield in Silicon Dioxide. . . . . . . . . . . . . . . . . . . . . . . . . V. V. Emeliyanov, A. S. Vatuev, and R. G. Useinov
Total Ionizing Dose Response and Annealing Behavior of Bulk nFinFETs With ON-State Bias Irradiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Yang, Q. Zhang, Y. Huang, Z. Zheng, B. Li, B. Li, X. Zhang, H. Zhu, H. Yin, Q. Guo, J. Luo, and Z. Han
Radiation Effects on Deep Submicrometer SRAM-Based FPGAs Under the CERN Mixed-Field Radiation Environment. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . G. Tsiligiannis, S. Danzeca, R. García Alía, A. Infantino, A. Lesea, M. Brugger, A. Masi, S. Gilardoni, and F. Saigné
X-Ray and Proton Radiation Effects on 40 nm CMOS Physically Unclonable Function Devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. F. Wang, E. X. Zhang, K. H. Chuang, W. Liao,
H. Gong, P. Wang, C. N. Arutt, K. Ni, M. W. McCurdy, I. Verbauwhede, E. Bury, D. Linten, D. M. Fleetwood, R. D. Schrimpf, and R. A. Reed
TID Response of pMOS Nanowire Field-Effect Transistors: Geometry and Bias Dependence. . . . . . . . . . . . . . . . . . . . . . J. Riffaud, M. Gaillardin,
. . . . C. Marcandella, N. Richard, O. Duhamel, M. Martinez, M. Raine, P. Paillet, T. Lagutere, F. Andrieu, S. Barraud, M. Vinet, and O. Faynot
An Effective Method to Compensate Total Ionizing Dose-Induced Degradation on Double-SOI Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Y. Huang, B. Li, X. Zhao, Z. Zheng, J. Gao, G. Zhang, B. Li, G. Zhang, K. Tang, Z. Han, and J. Luo
Electrons in GEO Measured With the ESA Multifunctional Spectrometer During the January 2014 SEP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . L. Arruda, P. Gonçalves, F. Carvalho, A. Marques, J. C. Pinto, A. Aguilar, P. Marinho, T. Sousa, H. Evans, and P. Nieminen
High-Energy Electrons in the Inner Zone. . . . . . . . . . . . . . . . . . . D. Boscher, S. Bourdarie, V. Maget, A. Sicard, G. Rolland, and D. Standarovski
A Method to Separate Proton Damage in LED and Phototransistor of Optocouplers. . . . . . . F. Irom, L. D. Edmonds, G. R. Allen, and B. G. Rax
Displacement Damage in Silicon Detectors for High Energy Physics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Moll
Ultrahigh Fluence Radiation Monitoring Technology for the Future Circular Collider at CERN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . G. Gorine, G. Pezzullo, I. Mandic, A. Jazbec, L. Snoj, M. Capeans, M. Moll, D. Bouvet, F. Ravotti, and J.-M. Sallese
Radioluminescence and Optically Stimulated Luminescence Responses of a Cerium-Doped Sol-Gel Silica Glass Under X-Ray Beam
Irradiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. Al Helou,
H. El Hamzaoui, B. Capoen, G. Bouwmans, A. Cassez, Y. Ouerdane, A. Boukenter, S. Girard, G. Chadeyron, R. Mahiou, and M. Bouazaoui
6-MeV Electron Exposure Effects on OFDR-Based Distributed Fiber-Based Sensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Sabatier, S. Rizzolo, A. Morana, T. Allanche, T. Robin, B. Cadier, P. Paillet,
M. Gaillardin, O. Duhamel, C. Marcandella, D. Aubert, G. Assaillit, G. Auriel, A. Boukenter, Y. Ouerdane, L. Mescia, E. Marin, and S. Girard
Ni-Ion and γ -Ray Irradiated Silica-Based Glasses Characterized by Luminescence and Raman Spectroscopies. . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Alessi, S. Girard, M. Raine,
M. Fanetti, D. Di Francesca, L. Martin-Samos, I. Reghioua, M. Gaillardin, N. Richard, P. Paillet, M. Valant, A. Boukenter, and Y. Ouerdane
Growth and Decay Kinetics of Radiation-Induced Attenuation in Bulk Optical Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . S. Girard, T. Allanche, P. Paillet, V. Goiffon, M. Van Uffelen, L. Mont-Casellas, C. Muller, A. Boukenter, Y. Ouerdane, and W. De Cock
Dependence of the Voids-Fiber Bragg Grating Radiation Response on Temperature, Dose, and Dose Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . A. Morana, S. Girard, E. Marin, M. Lancry, J. Grelin, C. Marcandella, P. Paillet, A. Boukenter, and Y. Ouerdane
Investigation of the Influence of Temperature and Annealing on the Radiation Hardness of Silicon Mach–Zehnder Modulators. . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Kraxner, S. Detraz, L. Olantera, C. Scarcella, C. Sigaud, C. Soos, J. Troska, and F. Vasey
X-Ray, Proton, and Electron Radiation Effects on Type I Fiber Bragg Gratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Blanchet, A. Morana, T. Allanche, C. Sabatier, I. Reghioua, E. Marin, A. Boukenter,
Y. Ouerdane, P. Paillet, M. Gaillardin, O. Duhamel, C. Marcandella, M. C. Trinczek, G. Assaillit, G. Auriel, D. Aubert, G. Laffont, and S. Girard
Distributed Optical Fiber Radiation Sensing in the Proton Synchrotron Booster at CERN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . D. Di Francesca, I. Toccafondo, G. Li Vecchi, S. Calderini, S. Girard, A. Alessi, R. Ferraro, S. Danzeca, Y. Kadi, and M. Brugger
Radiation-Induced Defects in 8T-CMOS Global Shutter Image Sensor for Space Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Le Roch, C. Virmontois, V. Goiffon, L. Tauziède, J.-M. Belloir, C. Durnez, and P. Magnan
Random Telegraph Signal in Proton Irradiated Single-Photon Avalanche Diodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F. Di Capua, M. Campajola, L. Campajola, C. Nappi, E. Sarnelli, L. Gasparini, and H. Xu
Qualification Strategy of New Technologies for Safety Instrumentation in Harsh Radiation Environments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Zinoni, L. Janvier, and B. Symoens
Radiation Tolerance of Proton-Irradiated LGADs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Otero Ugobono,
M. Carulla, M. Centis Vignali, M. Fernández García, C. Gallrapp, S. Hidalgo Villena, I. Mateu, M. Moll, G. Pellegrini, and I. Vila
In-Flight Dark Current Nonuniformity Used for Space Environment Model Benchmarking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Inguimbert, S. Bourdarie, M. Beaumel, M. C. Ursule, and R. Ecoffet
Electron Environment Characteristics and Internal Charging Evaluation for MEO Satellite. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J.-Z. Wang, Y.-Q. Hu, D.-Y. Yu, Z.-B. Cai, and Q.-X. Zhang
System Level Radiation Characterization of a 1U CubeSat Based on CERN Radiation Monitoring Technology. . . . . . . . . . . . . . . . . . R. Secondo,
R. García Alía, P. Peronnard, M. Brugger, A. Masi, S. Danzeca, A. Merlenghi, E. Chesta, J. R. Vaillè, M. Bernard, and L. Dusseau
ReadMON: A Portable Readout System for the CERN PH-RADMON Sensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. Mateu, M. Glaser, G. Gorine, M. Moll, G. Pezzullo, and F. Ravotti
Single-Event Effects in the Peripheral Circuitry of a Commercial Ferroelectric Random Access Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. L. Bosser, V. Gupta, A. Javanainen, G. Tsiligiannis,
S. D. LaLumondiere, D. Brewe, V. Ferlet-Cavrois, H. Puchner, H. Kettunen, T. Gil, F. Wrobel, F. Saigné, A. Virtanen, and L. Dilillo
Mechanisms of Electron-Induced Single-Event Upsets in Medical and Experimental Linacs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Tali, R. García Alía, M. Brugger, V. Ferlet-Cavrois,
R. Corsini, W. Farabolini, A. Javanainen, M. Kastriotou, H. Kettunen, G. Santin, C. Boatella Polo, G. Tsiligiannis, S. Danzeca, and A. Virtanen
Experimental Validation of an Equivalent LET Approach for Correlating Heavy-Ion and Laser-Induced Charge Deposition. . . . . . . . . . J. M. Hales,
A. Khachatrian, S. Buchner, N. J.-H. Roche, J. Warner, Z. E. Fleetwood, A. Ildefonso, J. D. Cressler, V. Ferlet-Cavrois, and D. McMorrow
Measurement and Mechanism Investigation of Negative and Positive Muon-Induced Upsets in 65-nm Bulk SRAMs . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . W. Liao, M. Hashimoto, S. Manabe, Y. Watanabe, S.-I. Abe, K. Nakano, H. Sato, T. Kin, K. Hamada, M. Tampo, and Y. Miyake
Negative and Positive Muon-Induced Single Event Upsets in 65-nm UTBB SOI SRAMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . S. Manabe, Y. Watanabe, W. Liao, M. Hashimoto, K. Nakano, H. Sato, T. Kin, S.-I. Abe, K. Hamada, M. Tampo, and Y. Miyake
SEE Testing in the 24-GeV Proton Beam at the CHARM Facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . R. García Alía, M. Brugger, M. Cecchetto, F. Cerutti, S. Danzeca, M. Delrieux, M. Kastriotou, M. Tali, and S. Uznanski
Physical Mechanisms Inducing Electron Single-Event Upset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. Caron, C. Inguimbert, L. Artola, N. Chatry, N. Sukhaseum, R. Ecoffet and F. Bezerra
Single Events Induced By Heavy Ions and Laser Pulses in Silicon Schottky Diodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . .M. Mauguet, D. Lagarde, F. Widmer, N. Chatry, X. Marie, E. Lorfevre, F. Bezerra, R. Marec, and P. Calvel
Impact of D-Flip-Flop Architectures and Designs on Single-Event Upset Induced by Heavy Ions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Artola, G. Hubert, S. Ducret, J. Mekki, A. Al Youssef, and N. Ricard
Lockstep Dual-Core ARM A9: Implementation and Resilience Analysis Under Heavy Ion-Induced Soft Errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . Á. B. de Oliveira, G. S. Rodrigues, F. L. Kastensmidt, N. Added, E. L. A. Macchione, V. A. P. Aguiar, N. H. Medina, and M. A. G. Silveira
Heavy Ion, Proton, and Neutron Charge Deposition Analyses in Several Semiconductor Materials. . . . . . . . . . . . . . . . . . . . . . Z. Wu and S. Chen
Impact of Thermal and Intermediate Energy Neutrons on SRAM SEE Rates in the LHC Accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Cecchetto, R. García Alía, S. Gerardin, M. Brugger, A. Infantino, and S. Danzeca
Effect of Transistor Variants on Single-Event Transients at the 14-/16-nm Bulk FinFET Technology Generation. . . . . . . . . . . . . . . . . . . . . . . . . . . .
R. C. Harrington, J. A. Maharrey, J. S. Kauppila, P. Nsengiyumva, D. R. Ball, T. D. Haeffner, E. X. Zhang, B. L. Bhuva, and L. W. Massengill
Radiation-Hardened Flip-Flops With Low-Delay Overhead Using pMOS Pass-Transistors to Suppress SET Pulses in a 65-nm
FDSOI Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Yamada, H. Maruoka, J. Furuta, and K. Kobayashi
Analysis of Temporal Masking Effects on Master- and Slave-Type Flip-Flop SEUs and Related Applications. . . . . . . . . . . . . . . . . . . . R. M. Chen,
N. N. Mahatme, Z. J. Diggins, L. Wang, E. X. Zhang, Y. P. Chen, Y. N. Liu, B. Narasimham, A. F. Witulski, B. L. Bhuva, and D. M. Fleetwood
Atmospheric-Like Neutron Attenuation During Accelerated Neutron Testing With Multiple Printed Circuit Boards. . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Cazzaniga, B. Bhuva, M. Bagatin, S. Gerardin, N. Marchese, and C. D. Frost
Evaluation of the Suitability of NEON SIMD Microprocessor Extensions Under Proton Irradiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Lindoso, M. García-Valderas, L. Entrena, Y. Morilla, and P. Martín-Holgado
On the Efficacy of ECC and the Benefits of FinFET Transistor Layout for GPU Reliability. . . . . . . . . C. Lunardi, F. Previlon, D. Kaeli, and P. Rech
Contribution of Thermal Neutrons to Soft Error Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Weulersse, S. Houssany, N. Guibbaud, J. Segura-Ruiz, J. Beaucour, F. Miller, and M. Mazurek
SEU Characterization of Three Successive Generations of COTS SRAMs at Ultralow Bias Voltage to 14.2-MeV Neutrons. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . J. A. Clemente, G. Hubert, J. Fraire, F. J. Franco, F. Villa, S. Rey, M. Baylac, H. Puchner, H. Mecha, and R. Velazco
Power-Aware SE Analysis of Different FF Designs at the 14-/16-nm Bulk FinFET CMOS Technology Node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .H. Jiang, H. Zhang, I. Chatterjee, J. S. Kauppila, B. L. Bhuva, and L. W. Massengill
Dual-Interlocked Logic for Single-Event Transient Mitigation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. A. Maharrey,
J. S. Kauppila, R. C. Harrington, P. Nsengiyumva, D. R. Ball, T. D. Haeffner, E. X. Zhang, B. L. Bhuva, W. T. Holman, and L. W. Massengill
SEE Error-Rate Evaluation of an Application Implemented in COTS Multicore/ Many-Core Processors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .P. Ramos, V. Vargas, M. Baylac, N.-E. Zergainoh, and R. Velazco
Thermal Neutron SRAM Detector Characterization at the CERN Mixed-Field Facility, CHARM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .C. Cangialosi, S. Danzeca, M. Brucoli, M. Brugger, and A. Masi
Analysis and Modeling of the Charge Collection Mechanism in 28-nm FD-SOI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. Correas, I. Nofal, J. Cerba, F. Monsieur, G. Gasiot, D. Alexandrescu, P. Roche, and R. Gonella
The Impact of Multiple-Cell Charge Generation on Multiple-Cell Upset in a 20-nm Bulk SRAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Kato, T. Yamazaki, K. Maruyama, T. Soeda, H. Itsuji, D. Kobayashi, K. Hirose, and H. Matsuyama
Experimental Investigation of the Joint Influence of Reduced Supply Voltage and Charge Sharing on Single-Event Transient Waveforms in
65-nm Triple-Well CMOS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Mitrović, M. Hofbauer, K.-O. Voss, and H. Zimmermann
Circuit-Level Layout-Aware Modeling of Single-Event Effects in 65-nm CMOS ICs. . . . . . . . . . A. O. Balbekov, M. S. Gorbunov, and G. I. Zebrev
The Increased Single-Event Upset Sensitivity of 65-nm DICE SRAM Induced by Total Ionizing Dose. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Q. Zheng, J. Cui, W. Lu, H. Guo, J. Liu, X. Yu, Y. Wei, L. Wang, J. Liu, C. He, and Q. Guo
Effects of Total-Ionizing-Dose Irradiation on Single-Event Response for Flip-Flop Designs at a 14-/16-nm Bulk FinFET Technology Node. . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Zhang, H. Jiang, X. Fan, J. S. Kauppila, I. Chatterjee, B. L. Bhuva, and L. W. Massengill
Reliability–Performance Analysis of Hardware and Software Co-Designs in SRAM-Based APSoCs. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . L. Antunes Tambara, F. L. Kastensmidt, P. Rech, F. Lins, N. H. Medina, N. Added, V. A. P. Aguiar, and M. A. G. Silveira
Design of a Radiation Hardened Power-ON-Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . E. López-Morillo, F. R. Palomo, F. Márquez, and F. Muñoz
Single-Event Burnout Mechanisms in SiC Power MOSFETs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . A. F. Witulski, D. R. Ball, K. F. Galloway, A. Javanainen, J.-M. Lauenstein, A. L. Sternberg, and R. D. Schrimpf
Single-Event Damage Observed in GaN-on-Si HEMTs for Power Control Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E. Mizuta, S. Kuboyama, Y. Nakada, A. Takeyama, T. Ohshima, Y. Iwata, and K. Suzuki
Degradation of KNN-Based Lead-Free Piezoelectric Material Under Gamma Irradiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .G. Dai, Y. Du, Q. Zhou, L. Zhong, X. Sun, K. Wang, and J. Zhang
Conference Author Index
|
PART II OF THREE PARTS
14TH INTERNATIONAL CONFERENCE ON INORGANIC SCINTILLATORS AND THEIR APPLICATIONS
(SCINT 2017) Chamonix, France, September 17–22, 2017
EDITORIAL
Conference Comments by the Editors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . E. Auffray, M. Nikl, V. Nagirnyi, J. Bárta, A. Belski, E. Bourret-Courchesne, F. Moretti, J. Pejchal, and G. Tamulaitis
INTRODUCTORY REVIEW
Needs, Trends, and Advances in Inorganic Scintillators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . C. Dujardin, E. Auffray, E. Bourret-Courchesne, P. Dorenbos, P. Lecoq, M. Nikl, A. N. Vasil’ev, A. Yoshikawa, and R.-Y. Zhu
INSTRUMENTATION AND APPLICATIONS
High-Quality Lead Tungstate Crystals for PANDA Produced at CRYTUR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . R. W. Novotny, K.-T. Brinkmann, V. Dormenev, M. Finger, J. Houzvicka, M. Korjik, P. Krist, S. Ochesanu, D. Petrýdes, and H.-G. Zaunick
The CMS ECAL Upgrade for Precision Crystal Calorimetry at the HL-LHC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Jofrehei
Calibration and Status of the 3-D Imaging Calorimeter of DAMPE for Cosmic Ray Physics on Orbit . . . . . . . . . . . . . . . . . . L. Wu, S. Wen, C. Liu,
H. Dai, Y. Wei, Z. Zhang, X. Wang, Z. Xu, C. Feng, S. Liu, Q. An, Y. Zhang, G. Huang, Y. Wang, C. Yue, J. Zang, J. Guo, J. Wu, and J. Chang
Development of SiPM-Based X-Ray Counting Scanner for Human Inspection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . D. Philippov, E. Popova, S. Vinogradov, A. Stifutkin, A. Pleshko, S. Klemin, A. Ilyin, V. Belyaev, D. Besson, and M. Vandychev
Application of a LaBr3(Ce) Scintillation Detector to an Environmental Radiation Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y.-Y. Ji, H.-Y. Choi, W. Lee, C.-J. Kim, H.-S. Chang, and K.-H. Chung
Performance of the Prototype of the Charged-Particle Veto System of the PADME Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F. Ferrarotto,
L. Foggetta, G. Georgiev, P. Gianotti, V. Kozhuharov, E. Leonardi, G. Piperno, M. Raggi, C. Taruggi, L. Tsankov, and P. Valente
Optimization of Dopants and Scintillation Fibers’ Diameter of GdAlO3/α-Al2O3 Eutectic for High-Resolution X-Ray Imaging. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Kamada,
N. Yasui, Y. Ohashi, T. Den, H. Yamaguchi, A. Yamaji, Y. Shoji, M. Yoshisno, K. JinKim, S. Kurosawa, Y. Ohashi, Y. Yokota, and A. Yoshikawa
A Study of 48deplCa100MoO4 Scintillation Crystals for the AMoRE-I Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Y. Lee, P. Aryal, S. Karki, H. J. Kim, S. K. Kim, Y. D. Kim, M. H. Lee, and C. W. Park
Radiation Damage Tests on Diamond and Scintillation Detector Components for the ITER Radial Neutron Camera . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . S. Baccaro, A. Cemmi, I. Di Sarcina, B. Esposito, G. Ferrara, A. Grossi, M. Montecchi, S. Podda, F. Pompili, L. Quintieri, and M. Riva
Scintillating Fiber Devices for Particle Therapy Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . I. Mattei, G. Battistoni, M. De Simoni, Y. Dong, A. Embriaco, M. Fischetti, V. Giacometti, E. Gioscio, M. Magi, C. Mancini-Terracciano,
M. Marafini, R. Mirabelli, S. Muraro, A. Sarti, A. Sciubba, E. S. Solfaroli Camillocci, M. Toppi, G. Traini, S. M. Valle, and V. Patera
Evaluation of ZnS:6LiF and ZnO:6LiF Scintillation Neutron Detectors Readout With SiPMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Hildebrandt, J.-B. Mosset, and A. Stoykov
Predicting the Performance of the CMS Precision PbWo4 Electromagnetic Calorimeter in the HL-LHC Era From Test Beam Results on
Irradiated Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Zghiche
Design and Status of the Mu2e Crystal Calorimeter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . N. Atanov, V. Baranov,
J. Budagov, Y. I. Davydov, V. Glagolev, V. Tereshchenko, Z. Usubov, F. Cervelli, S. Di Falco, S. Donati, L. Morescalchi, E. Pedreschi,
G. Pezzullo, F. Raffaelli, F. Spinella, F. Colao, M. Cordelli, G. Corradi, E. Diociaiuti, R. Donghia, S. Giovannella, F. Happacher, M. Martini,
S. Miscetti, M. Ricci, A. Saputi, I. Sarra, B. Echenard, D. G. Hitlin, T. Miyashita, F. Porter, R.-Y. Zhu, F. Grancagnolo, G. Tassielli, and P. Murat
Comparative Study of GdLu2Al2Ga3O12:Ce and GdY2Al2Ga3O12:Ce Scintillation Crystals for γ -Ray Detection. . . . . . . . . . . . . . . . . . . . . . . . .
. . . O. Sakthong, W. R. Chewpraditkul, W. Chewpraditkul, T. Szczesniak, L. Swiderski, M. Moszynski, K. Kamada, A. Yoshikawa, and M. Nikl
FUNDAMENTALS, PHYSICAL MECHANISMS, THEORIES
Afterglow and Quantum Tunneling in Ce-Doped Lutetium Aluminum Garnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . .. . . E. Mihóková, V. Babin, J. Pejchal, V. ˇCuba, J. Bárta, K. Popovich, L. S. Schulman, A. Yoshikawa, and M. Nikl
Temperature Quenching of Radio- and Photoluminescence of Y3(Ga,Al)5O12:Ce3+ and Gd3(Ga,Al)5O12:Ce3+ Garnet Ceramics. . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. D. Venevtsev, V. Khanin, P. A. Rodnyi, H. Wieczorek, and C. Ronda
Ultrafast Inorganic Scintillators for Gigahertz Hard X-Ray Imaging. . . . . . . . . . . C. Hu, L. Zhang, R.-Y. Zhu, A. Chen, Z. Wang, L. Ying, and Z. Yu
Reduced Afterglow Codoped CsI:Tl for High-Energy Imaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . S. R. Miller, H. B. Bhandari, P. Bhattacharya, C. Brecher, J. Crespi, A. Couture, C. Dinca, M. Rommel, and V. V. Nagarkar
Efficiency Studies on Gd3Ga3Al2O12:Ce Scintillators: Simulations and Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Rawat, M. Tyagi, G. A. Kumar, and S. C. Gadkari
MATERIALS PREPARATION AND CHARACTERIZATION - OXIDES
Novel All-Solid-State Composite Scintillators Based on the Epitaxial Structures of LuAG Garnet Doped With Pr, Sc, and Ce Ions. . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Witkiewicz-Lukaszek,
V. Gorbenko, T. Zorenko, K. Paprocki, O. Sidletskiy, I. Gerasymov, J. A. Mares, R. Kucerkova, M. Nikl, and Y. Zorenko
Growth and Optical Properties of a Cs2Mo2O7 Single Crystal . . . . . . . . . . . . . . . . . . . J. K. Son, I. R. Pandey, H. J. Kim, Y. D. Kim, and M. H. Lee
Luminescence and Scintillation Properties of Novel Disodium Dimolybdate (Na2Mo2O7) Single Crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..I. R. Pandey, S. Karki, H. J. Kim, Y. D. Kim, M. H. Lee, and N. V. Ivannikova
Scintillation Characteristics of GAGG:Ce Single-Crystalline Films Grown by Liquid Phase Epitaxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. Chewpraditkul, W. R. Chewpraditkul, N. Yawai, K. Wantong, M. Kucera, Z. Lucenicova, and M. Nikl
Comprehensive Study on Ce-Doped (Gd, La)2Si2O7 Scintillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Kurosawa,
T. Horiai, R. Murakami, Y. Shoji, P. Jan, A. Yamaji, S. Kodama, Y. Ohashi, Y. Yokota, K. Kamada, A. Yoshikawa, A. Ohnishi, and M. Kitaura
Scintillation Powders for the Detection of Neutrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Fiserova and J. Janda
MATERIALS PREPARATION AND CHARACTERIZATION - HALIDES AND OTHER
Slow Scintillation Suppression in Yttrium Doped BaF2 Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Chen, F. Yang, L. Zhang, R.-Y. Zhu, Y. Du, S. Wang, S. Sun, and X. Li
Scintillation Properties of TlGd2Cl7 (Ce3+) Single Crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Khan, G. Rooh, H. J. Kim, and S. Kim
Tl2GdCl5 (Ce3+): A New Efficient Scintillator for X- and γ -Ray Detection. . . . . . . . . . . . . . . . . . G. Rooh, A. Khan, H. J. Kim, H. Park, and S. Kim
Lithium-Loaded Scintillators Coupled to a Custom-Designed Silicon Photomultiplier Array for Neutron and Gamma-Ray Detection. . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..F. Liang, H. Brands, L. Hoy, J. Preston, and J. Smith
Growth and Luminescent Properties of Cs2HfCl6 Scintillators Doped With Alkaline Earth Metals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . S. Kodama, S. Kurosawa, J. Pejchal, R. Král, A. Yamaji, Y. Ohashi, Y. Yokota, K. Kamada, M. Nikl, and A. Yoshikawa
Growth and Characterization of SrI2:Eu Crystals Fabricated by the Czochralski Method. . . . E. Galenin, O. Sidletskiy, C. Dujardin, and A. Gektin
Scintillation Efficiency and Position Sensitivity for Radiation Events in Plastic Scintillators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. N. T. Tran, S. Sasaki, T. Sanami, Y. Kishimoto, and E. Shibamura
NOVEL AND NANO
Photoinduced Preparation of Bandgap-Engineered Garnet Powders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Bárta, V. Čuba, V. Jarý, A. Beitlerová, D. Pánek, T. Parkman, and M. Nikl
Photonic Crystal Slabs Applied to Inorganic Scintillators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . M. Salomoni, R. Pots, P. Lecoq, E. Auffray, S. Gundacker, M. Paganoni, B. Singh, M. Marshall, and V. V. Nagarkar
Structural, Optical, and Luminescent Properties of ZnO:Ga and ZnO:In Ceramics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . K. A. Chernenko, E. I. Gorokhova, S. B. Eron’ko, A. V. Sandulenko, I. D. Venevtsev, H. Wieczorek, and P. A. Rodnyi
Noninvasive Inspection of Anisotropic Crystals: Innovative Photoelasticity-Based Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. P. Natali, L. Montalto, D. Rinaldi, F. Davì, N. Paone, and L. Scalise
Light Spread Manipulation in Scintillators Using Laser Induced Optical Barriers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Bläckberg, M. Moebius, G. El Fakhri, E. Mazur, and H. Sabet
Scintillators in High-Power Laser-Driven Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . Tarisien, J. L. Henares, C. Baccou, T. Bonnet, F. Boulay,
F. Gobet, M. Gugiu, F. Hannachi, S. Kisyov, C. Manailescu, V. Meot, F. Negoita, X. Raymond, G. Revet, L. Tudor, and M. Versteegen
Conference Author Index
|
PART III OF THREE PARTS
REGULAR PAPERS
ACCELERATOR TECHNOLOGY
RF Transient Analysis and Stabilization of the Phase and Energy of the Proposed PIP-II LINAC. . . . . . . . . . . . . . . J. P. Edelen and B. E. Chase
Electromagnetic Design of Microwave Cavities for Side-Coupled Linear Accelerators: A Hybrid Numerical/Analytical Approach. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Laneve, M. C. Falconi, M. Bozzetti, G. Rutigliani, R. A. Prisco, V. Dimiccoli, and F. Prudenzano
NUCLEAR POWER INSTRUMENTATION AND CONTROL
Compressed Sensing Artificial Neural Network for Reactor Core Flux Mapping. . . . . . . . . . .S. K. Bahuguna, S. Mukhopadhyay, and A. P. Tiwari
RADIATION EFFECTS
TCAD Simulation of Single-Event-Transient Effects in L-Shaped Channel Tunneling Field-Effect Transistors. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Q. Wang, H. Liu, S. Wang, and S. Chen
Total-Ionizing-Dose Effects on Al/SiO2 Bimorph Electrothermal Microscanners . . . . . . . . . . . . . . . . . . . . . . . . . . W. Liao, E. X. Zhang, M. L. Alles,
A. L. Sternberg, C. N. Arutt, D. Wang, S. E. Zhao, P. Wang, M. W. McCurdy, H. Xie, D. M. Fleetwood, R. A. Reed, and R. D. Schrimpf
RADIATION INSTRUMENTATION
First Assessment of ENDF/B-VIII and EPICS Atomic Data Libraries. . . . . . . . . . . . . . . . . . . . . M. C. Han, M. G. Pia, P. Saracco, and T. Basaglia
Validation of Shell Ionization Cross Sections for Monte Carlo Electron Transport. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .. . T. Basaglia, M. Bonanomi, F. Cattorini, M. C. Han, G. Hoff, C. H. Kim, S. H. Kim, M. Marcoli, M. G. Pia, and P. Saracco
Transparent Ceramic Garnet Gamma-Ray Spectrometer With Directionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . E. L. Swanberg, N. J. Cherepy, B. M. Wihl, P. R. Beck, Z. M. Seeley, S. L. Hunter, S. E. Fisher, S. A. Payne, and J. Kindem
Theoretical and Experimental Investigation of Gating Performance of Subnanosecond Image IntensifierWith Microstrip Photocathode. . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .M. Zhang, L. Sheng, H. Hu, Y. Li, Y. Liu, D. Hei, B. Peng, and J. Zhao
Development of a Portable Muography Detector for Infrastructure Degradation Investigation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Chaiwongkhot, T. Kin, H. Ohno, R. Sasaki, Y. Nagata, K. Kondo, and Y. Watanabe
Postgrowth Annealing of MOVPE-Grown Single-Crystal CdTe Epilayers on (211) Si Substrates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Niraula, K. Yasuda, J. Ozawa, T. Yamaguchi, S. Tsubota, T. Mori, and Y. Agata
Thallium Bromide Semiconductor Radiation Detectors With Thallium Contacts. . . . . . . . . . . . . . . . . . . . . . . . . A. Datta, P. Becla, and S. Motakef
Two-Step Annealing to Remove Te Secondary-Phase Defects in CdZnTe While Preserving the High Electrical Resistivity. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Kim, S. Hwang, H. Yu, Y. Choi, Y. Yoon, A. E. Bolotnikov, and R. B. James
REAL TIME SYSTEMS
New Updates on the ATLAS ROD Board Implementation for Pixel Layers 1 and 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. Giangiacomi, G. Balbi, A. Damilano, D. Falchieri, A. Gabrielli, L. Lama, and R. Travaglini
Design and Implementation of the Resonant Magnetic Perturbations Feedback Control System for Tearing Mode Suppression on J-TEXT. . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. Zheng, F. Hu, M. Zhang, D. Li, Q. Hu, H. Jin, B. Rao, M. Yan, Y. Pan, and K. Yu
A Calculation Software for 4πβ–γ Coincidence Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z.-G. Ding, K.-Z. Song, M. Zhang, Z.-J. Yang, J.-C. Liang, H.-R. Liu, K. Zhong, and Z. Tu
The Central Control System for KTX . . . . . . . . . . . . . . . . . . . Z. Zhang, B. Xiao, F. Wang, Z. Ji, Y. Wang, P. Wang, Z. Xu, T. Lan, H. Li, and W. Liu
|