T-PS Header
T-NS Home  |   Editorial Board  |   T-NS in IEEE Xplore  |    Early Access  |   Manuscript Submission
FEBRUARY 2018 FEATURE ARTICLES - THESE ARE OPEN ACCESS FOR A LIMITED TIME

Design and Characterization of a Low-Cost FPGA-Based TDC

by Alessandro Tontini, Leonardo Gasparini, Lucio Pancheri, and Roberto Passerone


We present a field-programmable gate array (FPGA) implementation of a time-to-digital converter (TDC) based on a low-cost, low-area Spartan 6 device. The converter is based on a tapped delay line model. Several implementation details are discussed with a particular focus on critical blocks such as the input stage and thermometer-to-binary decoding techniques. We implemented a tap filtering technique to improve the differential nonlinearity (DNL) of the single delay line while keeping a good LSB value of 25.57 ps with a single-shot precision (SSP) between 0.69 - 1.46 LSB. Measured DNL and integral nonlinearity (INL) lie in the range between -0.90 + 1.23 and -0.43 ÷ 2.96 LSB, respectively. Measured DNL and INL lie in the range between -0.90 ÷ 1.23 and -0.43 ÷ 2.96 LSB, respectively. We then implemented an interpolating TDC to overcome the limitations of a single delay line in terms of linearity and measurement range. The interpolating TDC uses the sliding scale technique, where the time interval to be measured is asynchronous with respect to the FPGA clock, achieving DNL and INL in the range -0.072 ÷ 0.070 and -0.755 ÷ 0.872 LSB. SSP is in the 1.096 ÷ 2.815 range. Moreover, we present a novel comparison between the DNLs obtained with two different methods: statistical code density test and using a finely controlled delay source. Finally, we present the results of a Monte Carlo simulation used to investigate the effects of nonlinear propagation of the signal through the delay line. more...
 
-----------------------

The Solar Accumulated and Peak Proton and Heavy Ion Radiation Environment (SAPPHIRE) Model

by Piers Jiggens, Athina Varotsou, Pete Truscott, Daniel Heynderickx, Fan Lei, Hugh Evans, and Eamonn Daly


A new probabilistic model aiming to cover all aspects of the solar energetic particle (SEP) environment required for mission specifications is presented; the solar accumulated and peak proton and heavy ion radiation environment model. This model includes an updated reference data set upon which the analysis is based, a thorough evaluation of fitting procedures for SEP fluxes, a probabilistic helium model not based on proton fluxes, an extension to heavier ions based on new analysis of the Advanced Composition Explorer/solar isotope spectrometer data set, and a careful extrapolation of all output spectra to cover energies from 0.1 MeV/nuc to 1 GeV/nuc. Also included in this paper are derivations of spectra for rare solar particle events, which would occur at a given mean frequency and a new description for implementing the model to make it accessible to the public through systems, such as SPace ENVironment Information System or OMERE. more...
 
-----------------------

Simulation Model of Transmitted X-Rays in Polycapillary Optics for TES Microcalorimeter EDS System on Scanning Transmission Electron Microscope

by Akira Takano, Keisuke Maehata, Naoko Iyomoto, Toru Hara, Kazuhisa Mitsuda, Noriko Yamasaki, and Keiichi Tanaka


We created a simple simulation model of transmitted X-rays in polycapillary optics for improved understanding of the transmission characteristics and to aid in the design of the geometrical parameters of the polycapillary optics. New polycapillary optics for a 64-pixel array transition-edge sensor (TES) microcalorimeter energy-dispersive spectrometer system that was installed in a scanning transmission electron microscope (STEM) were developed using the simulation model. The characteristic X-rays that are emitted from the STEM specimen were transmitted and focused on the pixel array TES microcalorimeter by the polycapillary optics. The experimental X-ray transmission characteristics of the manufactured polycapillary optics agreed with the simulated results. more...
 
-----------------------

A PUBLICATION OF THE IEEE NUCLEAR AND PLASMA SCIENCES SOCIETY

FEBRUARY 2018   |  VOLUME 65  |  NUMBER 2  |  IETNAE  |  (SSN 0018-9499)

REGULAR PAPERS
NUCLEAR POWER INSTRUMENTATION AND CONTROL
Data-Driven Subspace Predictive Control of a Nuclear Reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . V. Vajpayee, S. Mukhopadhyay, and A. P. Tiwari
Design and Characterization of a Low-Cost FPGA-Based TDC . . . . . . . . . . . . . . . . . . . . . . . A. Tontini, L. Gasparini, L. Pancheri, and R. Passerone

RADIATION EFFECTS
Read Static Noise Margin Decrease of 65-nm 6-T SRAM Cell Induced by Total Ionizing Dose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Q. Zheng, J. Cui, X. Yu, W. Lu, C. He, T. Ma, J. Zhao, D. Ren, and Q. Guo
The Solar Accumulated and Peak Proton and Heavy Ion Radiation Environment (SAPPHIRE) Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. Jiggens, A. Varotsou, P. Truscott, D. Heynderickx, F. Lei, H. Evans, and E. Daly
Predicting Muon-Induced SEU Rates for a 28-nm SRAM Using Protons and Heavy Ions to Calibrate the Sensitive Volume Model . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. M. Trippe, R. A. Reed,  
     R. A. Austin,   B. D. Sierawski,   L. W. Massengill,   R. A. Weller,   K. M. Warren,   R. D. Schrimpf,   B. Narasimham,   B. Bartz, and    D. Reed
Observation of Single-Event Burnout During Inductive Switching . . . . . . . . . . . . . . L. Scheick, G. Allen, L. Edmonds, R. Schaefer, and R. Menke
Simulation of Single-Particle Displacement Damage in Silicon—Part III: First Principle Characterization of Defect Properties . . . . . . . . . . A. Jay,  
     A. Hémeryck,   N. Richard,   L. Martin-Samos,  M. Raine,  A. Le Roch,  N. Mousseau,  V. Goiffon,  P. Paillet,   M. Gaillardin,  and  P. Magnan

Microbeam SEE Analysis of MIM Capacitors for GaN Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. Kupsc, A. Javanainen, V. Ferlet-Cavrois, M. Muschitiello, A. Barnes, A. Zadeh, J. Calcutt, C. Poivey, H. Stieglauer, and K.-O. Voss

RADIATION INSTRUMENTATION
Identification of Particles of Ionizing Radiation by the Analysis of Fluorescence Pulse Form of the Thin Pen Film Scintillator . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Garankin, A. Plukis, R. Plukienė, E. Lagzdina, and V. Remeikis
The MONDO Detector Prototype Development and Test: Steps Toward an SPAD-CMOS-Based Integrated Readout (SBAM Sensor) . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . R. Mirabelli, L. Gasparini, M. Magi, M. Marafini, D. Pinci, A. Sarti, A. Sciubba, D. Stoppa, G. Traini, and V. Patera
Quality Assurance on Undoped CsI Crystals for the Mu2e Experiment . . . . . . N. Atanov, V. Baranov, J. Budagov, Yu. I. Davydov,  V. Glagolev,
     V. Tereshchenko, Z. Usubov, F. Cervelli, S. Di Falco, S. Donati, L. Morescalchi,  E. Pedreschi,  G. Pezzullo,  F. Raffaelli, F. Spinella, F. Colao,
     M. Cordelli,    G. Corradi,    E. Diociaiuti,    R. Donghia,    S. Giovannella,   F. Happacher,    M. Martini,   S. Miscetti,    M. Ricci,    A. Saputi,
      I. Sarra,    B. Echenard,    D. G. Hitlin,   C. Hu,   T. Miyashita,   F. Porter,  L. Zhang,  R.-Y. Zhu,  F. Grancagnolo,  G. Tassielli, and  P. Murat

Simulation Model of Transmitted X-Rays in Polycapillary Optics for TES Microcalorimeter EDS System on Scanning Transmission Electron
     Microscope
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Takano, K. Maehata, N. Iyomoto, T. Hara, K. Mitsuda, N. Yamasaki, and K. Tanaka
Cryogenic Heat–Light Detection System for 1-cm3 Scintillating Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. L. Kim, G. B. Kim, H. J. Kim, I. Kim, Y. H. Kim, H. J. Lee, S. Y. Oh, and J. H. So

REAL TIME SYSTEMS
Profile Aided Real-Time Plasma Electron Density Feedback Control Based on FPGA on J-TEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. Zheng, F. Hu, M. Zhang, T. Yuan, X. Zhao, Y. Zhou, J. Chen, L. Gao, Y. Liu, P. Shi, and Y. Pan
An Extensible Induced Position Encoding Readout Method for Micropattern Gas Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Liu, S. Ma, B. Qi, Z. Shen, G. Yuan, and Q. An
FPGA-Based Solutions for Analog Data Acquisition and Processing Integrated in Area Detector Using FlexRIO Technology . . . . . . . . . . . . . . . . . .
    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. Herrero, A. Carpeño, S. Esquembri, M. Ruiz, and E. Barrera
MBSPEX and PEXORNET—Linux Device Drivers for PCIe Optical Receiver DAQ and Control . . . J. Adamczewski-Musch, N. Kurz, and S. Linev
Implementation of ITER Fast Plant Interlock System Using FPGAs With CompactRIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E. Barrera, M. Ruiz, A. Bustos, M. Afif, B. Radle, J. L. Fernández-Hernando, I. Prieto, R. Pedica, J. M. Barcala, J. C. Oller, and R. Castro
Tests of High-Resolution Front-End Electronics for Water-Cherenkov Air Shower Detectors Equipped With Cyclone V on the Pierre
     Auger Test Array
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Szadkowski
Real-Time Controller for Research and Development on ITER Ion Cyclotron Heating and Current Drive Source . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Verma, K. Rajnish, D. Soni, H. Patel, R. Singh, R. Trivedi, and A. Mukherjee
Readout Electronics and Data Acquisition for Gaseous Tracking Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Korcyl, P. Strzempek, A. Apostolou, T. Fiutowski, M. Idzik, M. Kajetanowicz, D. Przyborowski,  P. Salabura,  J. Smyrski,  K. Świentek, and  P. Wintz
Data Transfer Methods in Real-Time Controller of Ion Cyclotron High-Voltage Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . H. Dhola, A. Patel, A. Thakar, N. P. Singh, R. Dave, D. Parmar, K. Mehta, N. Goswami, S. Gajjar, and U. K. Baruah
Real-Time Implementation in JET of the SPAD Disruption Predictor Using MARTe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . S. Esquembri, J. Vega, A. Murari, M. Ruiz, E. Barrera, S. Dormido-Canto, R. Felton, M. Tsalas, D. Valcarcel, and JET Contributors

Accessibility | Privacy and Opting Out of Cookies | Nondiscrimination Policy

Copyright 2018 IEEE - All rights reserved. Use of this newsletter site signifies your agreement to the IEEE Terms and Conditions.
A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. [Response: Read Receipt]

If you would like to be removed from this email distribution, please [Response: Unsubscribe from List].
If you have unsubscribed in error, please [Response: Subscribe to List].
To unsubscribe from all mailings, use your IEEE Account to update your "Personal Profile and Communication Preferences."

Replies to this message will not reach IEEE. Due to local email service/provider settings, random characters may appear in some instances.

Although the IEEE is pleased to offer the privilege of membership to individuals and groups in the OFAC embargoed countries, the IEEE cannot offer certain services to members from such countries.

IEEE
445 Hoes Lane
Piscataway, NJ 08854 USA
+1 800 678 4333 (toll free, US & Canada)
+1 732 981 0060 (Worldwide)

For more information or questions regarding your IEEE Membership or IEEE Account, please direct your inquiries to the IEEE Contact Center.