T-NPS Header
T-PS Home  |  Editorial Board  |  T-PS in IEEE Xplore  |   Early Access  |  Manuscript Submission
FEATURED STORIES - APRIL 2018

Electrical Oscillations of the UNU-ICTP Plasma Focus Device in the Early Breakdown Phase

by Y. S. Seng
article one image
Recent circuit driven electromagnetic particle in cell simulation of the United Nations University-International Centre for Theoretical Physics plasma focus device revealed regular oscillations in both the voltage and current profiles. The simulated voltage waveform agreed well with the experimental profile, where similar unaccounted oscillations were also observed. In this paper, the oscillations are attributed to the plasma inductance, whose value was calculated by circuit analysis and agreed reasonably well with the computed experimental value. A circuit simulation of the prebreakdown and postbreakdown phases, with the plasma inductance incorporated, reproduced with sufficiency accuracy the electromagnetic particle in cell generated waveforms and consequently confirmed our finding. more...
-----------------------

Internal Charging Characteristics in Typical Navigation Satellite Orbits

by Jian-Zhao Wang, Yan-Qi Hu, Deng-Yun Yu, Zhen-Bo Cai, and Qing-Xiang Zhang
article one image
Internal charging is an important hazard for navigation satellites, which operate in outer electron radiation belt and experience a very variable radiation environment because of the inclination of orbits. A rapid analysis method of internal charging is introduced, including physical model, conductivity model, shielding and electron transportation algorithm, and charging calculation method. Using this method, we calculate the charging processes of dielectric in medium earth orbit (MEO), geostationary earth orbit (GEO), and inclined geosynchronous orbit (IGSO). The results show that charging field fluctuates a lot in orbit and variation rate of field is proportional to electron flux. The saturated charging field in MEO is higher than that in GEO, and the field in GEO is higher than that in IGSO. So, the internal electrostatic discharging risk in MEO, GEO, and IGSO decreases in turn. If conductivity of dielectric is smaller, saturated field is larger and the difference of field in MEO, GEO, and IGSO is smaller. The dark and radiation-induced conductivity (RIC) of dielectric are important parameters in simulation, so we study the impact of conductivity in charging processes. In IGSO and MEO, when dark conductivity-induced time constant of charging is greater than orbital period and RIC is not large, the deposited electrons between different orbits accumulate and the charging field increase constantly. In this situation, the dark conductivity has a big influence on internal charging and it is important to measure it accurately. more...
-----------------------

Einstein Frequency Measurement for a Strongly Coupled Dusty Plasma

by Chun-Shang Wong, John Goree, and Zach Haralson
article one image
The Einstein frequency ΩE was experimentally determined for a 2-D dusty plasma. We found ΩE=49.4 s-1 and 50.2 s-1 for the collection of microspheres in a crystalline and liquid-like state, respectively. Comparing to the nominal 2-D dust plasma frequency ωpd , we found the ratio ΩE / ωpd≈1 / √3. This experimental ratio is consistent with previous predictions of Yukawa simulations. Our results were obtained by analyzing images of the microspheres to obtain their positions, charge, and the screening length; we used these measurements to calculate resonant frequencies of test particles. more...
-----------------------

Dynamics of Water-Ice Grains Formed in a Plasma Where Gravitational Force is Compensated by Thermophoretic Force

by Kil-Byoung Chai
article one image
A capacitively coupled discharge source equipped with liquid nitrogen cooling system has been developed to create water-ice grains in a plasma environment at the Korea Atomic Energy Research Institute. We found that the gravitational force exerted on 5-i μm water-iice grains is nearly compensated by the thermophoretic force when the upper electrode is cooler than that of the bottom electrode by 10-i15 K and we observed two distinct, axisymmetric vortex flows are formed in the upper and lower parts of the plasma. The numerical calculation solving a set of equations including the vorticity equation confirms that the observed axisymmetric vortices result from the nonconservative ion drag force more...
-----------------------

Plasma-Enabled Adaptive Absorber for High-Power Microwave Applications

by Komlan Payne, Kevin Xu, Jun H. Choi, and Jay Kyoon Lee
article one image
The feasibility of realizing an adaptive absorber subject to high-power microwave/electromagnetic (EM) pulse is investigated. To achieve this goal, a passive absorber based on circuit analog topology is designed and then embedded with active components to enable tunability/adaptivity of the absorption bandwidth. This tuning mechanism can be achieved using discrete plasma shells embedded in a low-profile frequency selective surface-based absorber. The absorption center frequency and bandwidth can be tuned by controlling the plasma frequency. A systematic design guide is presented to explain the working principle of the proposed absorber. The proposed design is insensitive to the polarization, and the absorption bandwidth is enhanced by controlling two spectrally overlapped resonances. A full wave EM simulation is performed to present the performance of the proposed absorber. Finally, the peak power handling capability of the active absorber has been investigated. more...
-----------------------
header

A PUBLICATION OF THE IEEE NUCLEAR AND PLASMA SCIENCES SOCIETY

APRIL 2018   |  VOLUME 46  |  NUMBER 4  |  ITPSBD  |  (ISSN 0093-3813)

SPECIAL ISSUE ON DUSTY PLASMAS 2017


Guest Editorial
Special Issue on Dusty Plasmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Pavlů and P. Hartmann


SPECIAL ISSUE PAPERS
Turbulence in an Auto-Oscillating Complex Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Schwabe, S. Zhdanov, and C. Räth
Dynamics of Water–Ice Grains Formed in a Plasma Where Gravitational Force is Compensated by Thermophoretic Force . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K.-B. Chai
Crystallization of a Complex Plasma Under Gravity Conditions in Dependence of Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Steinmüller, C. Dietz, M. Kretschmer, and M. H. Thoma
Spectral Study of Glow Discharge With Dusty Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Pikalev, V. Kobylin, and A. Semenov
Electron Beam Action and High Charging of Dust Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. I. Kopnin, T. I. Morozova, and S. I. Popel
Measurements of Ion Density and Electron Temperature Around Voids in Dusty Plasmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Takahashi, J. Lin, M. Hénault, and L. Boufendi
MF Microspheres: Helping or Puzzling Tool? . . . . . . . . . . . . . . . . . M. Vyšinka, L. Nouzák, J. Pavlů, Z. Němeček, J. Šafránková, and I. Richterová
Levitation of Microorganisms in the Sheath of an RF Plasma . . . . . . . . . . . . . . . . . . A. Sanpei, T. Kigami, H. Kanaya, Y. Hayashi, and M. Sampei
Dust Particle Charge in a Stratified Glow Discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Kartasheva, Y. Golubovskii, and V. Karasev
The Rotation of Complex Plasmas in a Stratified Glow Discharge in the Strong Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. Karasev, E. Dzlieva, S. Pavlov, L. Novikov, and S. Maiorov
Interaction of the Earth’s Magnetotail With Dusty Plasma Near the Lunar Surface: Wave Processes and Turbulent Magnetic Reconnection . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. N. Izvekova, T. I. Morozova, and S. I. Popel
Simple Dispersion Relations for Coulomb and Yukawa Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Khrapak and A. Khrapak
Melting Point of the Small Crystallization Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. S. Dragan and V. V. Kutarov
Plasma Polarization and Wake Formation Behind a Dust Particle in an External Electric Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Sukhinin, M. Salnikov, A. Fedoseev, and A. Rostom
Effects of Polarized Debye Sheath and Trapped Ions on Solitary Structures in a Strongly Coupled Inhomogeneous Dusty Plasma . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .H. Alinejad and V. Khorrami
Einstein Frequency Measurement for a Strongly Coupled Dusty Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . C.-S. Wong, J. Goree, and Z. Haralson
Effect of Ion Beam on Low-Frequency Cnoidal Waves in a Non-Maxwellian Dusty Plasma . . . . . . . . N. Kaur, M. Singh, R. Kohli, and N. S. Saini
Theoretical Modeling of an Ion-Beam-Driven Kelvin–Helmholtz Instability in a Plasma Cylinder Having Negatively Charged Dust Grains . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. R. Segwal and S. C. Sharma
Effect of Ion Beam on Dust-Acoustic Waves Under Transverse Perturbations in Dusty Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. Kohli, N. Kaur, M. Singh, and N. S. Saini
Weakly Relativistic Ion-Acoustic Solitary Waves in Dusty Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. C. Kalita and S. Das
Current-Driven Low-Frequency Electrostatic Waves in a Collisional Strongly Coupled Magnetized Dusty Plasma . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. R. Segwal and S. C. Sharma
Synchronization of the Dust Acoustic Wave in an RF and a DC Discharge Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Williams
Bifurcation Analysis for Dust-Acoustic Waves in a Four-Component Plasma Including Warm Ions . . . . . . . . . . . . . . S. Y. El-Monier and A. Atteya
Effect of Nonthermal Electrons and Ions on Longitudinal Dust Acoustic Solitary Waves in a Strongly Couplesd Dusty Plasma . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Y. Ghai, N. S. Saini, and M. Singh
The Effect of Magnetic Field on Dust Dynamic in the Edge Fusion Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. K. Kodanova, N. Kh. Bastykova, T. S. Ramazanov, G. N. Nigmetova, and S. A. Maiorov

PART II OF TWO PARTS

REGULAR PAPERS
Review Papers
Plasma Purification of Halogen Volatile Organic Compounds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Du, Y. Huang, X. Gong, and X. Wei

Basic Processes in Fully and Partially Ionized Plasmas
Study of the Secondary Electron Yield in Dielectrics Using Equivalent Circuital Models . . . . . . . . . . . . . . D. Bañón-Caballero, J. M. Socuéllamos,
      R. Mata,    L. Mercadé,    B. Gimeno,    V. E. Boria,    D. Raboso,    V. E. Semenov,    E. I. Rakova,    J. F. Sánchez-Royo,    and    A. Segura

Sheath Properties in Two-Temperature Non-Maxwellian Electron Plasmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. M. Hatami and M. Tribeche
Understanding Plasma–Liquid Interface Instabilities Using Particle Image Velocimetry and Shadowgraphy Imaging Methods . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Lai, V. Petrov, and J. E. Foster
Plasma Thruster Using Momentum Exchange in Crossed Magnetic Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. R. Karimov and P. A. Murad
Effect of Aluminum Nitride on Discharge Mode Transition in Atmospheric Pressure He/O2 DBD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H.-B. Mu, Y.-H. Guo, C.-W. Yao, Z.-H. Jia, Z.-S. Chang, and G.-J. Zhang
Control of Ion Species and Energy in High-Flux Helicon-Wave-Excited Plasma Using Ar/N2 Gas Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Huang, C. Jin, Y. Yang, X. Wu, L. Zhuge, Q. Wang, and H. Ji

Microwave Generation and Microwave-Plasma Interaction
RF Breakdown of the Resonant Reflector in a Relativistic Backward Wave Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Cao, J. Sun, Y. Zhang, Z. Song, P. Wu, Z. Fan, Y. Teng, T. He, and C. Chen
Experimental Studies on a 1-kW High-Gain S-Band Magnetron Amplifier With Output Phase Control Based on Load–Pull
      Characterization
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Liu, X. Chen, M. Yang, K. Huang, and C. Liu
Transmission Channel Characteristics of Relay Dual-Polarization MIMO System for Hypersonic Vehicles Under Plasma Sheath . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Shi, H. Yang, B. Bai, W. Liu, B. Yao, Y. Liu, and X. Li
Plasma Passive Jamming for SAR Based on the Resonant Absorption Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. Wang, X. Wang, S. Cheng, Y. Meng, G. Zhang, and Y. Zhou
Plasma-Enabled Adaptive Absorber for High-Power Microwave Applications . . . . . . . . . . . . . . . . . . . . . K. Payne, K. Xu, J. H. Choi, and J. K. Lee

High Energy Density Plasmas and Their Interactions
Electrical Oscillations of the UNU-ICTP Plasma Focus Device in the Early Breakdown Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. S. Seng

Industrial, Commercial, and Medical Applications of Plasmas
A Two-Mode Portable Atmospheric Pressure Air Plasma Jet Device for Biomedical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. Xu, X. Cui, Z. Fang, Y. Shi, and R. Zhou
High-Efficiency Inductively Coupled Plasma Source With Dual Antenna Hybrid Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z.-L. Zhang, Q.-Y. Nie, F.-R. Kong, X.-N. Zhang, B.-H. Jiang, J. M. Lim, I. Levchenko, and S. Xu

Pulsed Power Science and Technology
Effects of Multiple Pulses on Decomposition of Hydrocarbons for Hydrogen Production . . . . . . . . . . . . . . Y. Nishida, T.-C. Chen, and C.-Z. Cheng
Durability and Stiffness Estimation for the Composite Overwrap Electromagnetic Rail Launcher Barrel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. V. Lukin, A. V. Plekhanov, A. S. Rodin, K. D. Golovkin, and E. S. Yushkov
Electrical Characteristics of Microsecond Electrical Explosion of Cu Wires in Air Under Various Parameters . . . . . . . . . . . G. Yin, X. Li, and S. Jia

Arcs & MHD
Predicting Thermal Interruption Characteristics of a 72.5-kV CO2 Circuit Breaker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y.-H. Oh, H. J. Lee, K.-D. Song, J.-K. Kim, and S.-C. Hahn
Net Emission Coefficient and Radiation Transfer Characteristics of Thermal Plasma Generated in Nitrogen-PTFE Vapor Mixture . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Zhong, F. Yang, W. Wang, D. Yuan, and J. D. Yan
Vacuum Arcs and Postarc Characteristic of Vacuum Interrupters With External AMF at Current Zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Ge, X. Cheng, M. Liao, X. Duan, and J. Zou

Space Plasmas
Internal Charging Characteristics in Typical Navigation Satellite Orbits . . . . . . . . . . . . . J.-Z. Wang, Y.-Q. Hu, D.-Y. Yu Z.-B. Cai, and Q.-X. Zhang
A New Model for Plasma Interactions With High-Voltage Solar Arrays on the International Space Station . . . . . . . . E. M. Willis and M. Z. A. Pour

Fusion Science and Technology
A Finite Element Versus Analytical Approach to the Solution of the Current Diffusion Equation in Tokamaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Šesnić, V. Dorić, D. Poljak, A. Šušnjara, J.-F. Artaud, and J. Urban

Electromagnetic Launch Science and Technology
Hydrodynamic Lubrication of a Liquid Conducting Film Controlled by Magnetic Pressure at Rail–Armature Interface . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Yao, S. Xia, L. Chen, and J. He


Special Issue on Micropropulsion and Cubesats
Wall Temperature Measurements Within a High-Power Inductive Plasma Discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. R. Chadwick, T. Janocha, G. Herdrich, B. Dally, and M. Kim

Special Issue on Electromagnetic Launchers
Study of Current Pulse Form for Optimization of Railguns Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Rabiei, A. Keshtkar, and L. Gharib

Special Issue-EAPPC2016
The Peculiarities of the Application of Magnetic-Pulse Method for Forming Controlled Pressure Pulses to Test Metal Samples . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. I. Krivosheev, S. G. Magazinov, and D. I. Alekseev

Technical Note
High-Speed Camera Imaging in the Discharge Channel During a Hall Thruster Ignition . . . . . . . . . . . . . . S. Yan, W. Li, Y. Ding, L. Wei, and D. Yu


ANNOUNCEMENTS
Call for Papers—Special Issue for Selected Papers from EAPPC/BEAMS 2018
Call for Papers—The 15th Workshop on the Physics of Dusty Plasmas
Call for Papers—Special Issue of the IEEE Transactions on Plasma Science on Plasma-Assisted Technologies
Call for Papers—Special Issue for Plenary, Invited and Selected Papers from the 2018 Asia-Pacific Conference on Plasma
     and Terahertz Science


Accessibility | Privacy and Opting Out of Cookies | Nondiscrimination Policy

Copyright 2018 IEEE - All rights reserved. Use of this newsletter site signifies your agreement to the IEEE Terms and Conditions.
A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. [Response: Read Receipt]

If you would like to be removed from this email distribution, please [Response: Unsubscribe from List].
If you have unsubscribed in error, please [Response: Subscribe to List].
To unsubscribe from all mailings, use your IEEE Account to update your "Personal Profile and Communication Preferences."

Replies to this message will not reach IEEE. Due to local email service/provider settings, random characters may appear in some instances.

Although the IEEE is pleased to offer the privilege of membership to individuals and groups in the OFAC embargoed countries, the IEEE cannot offer certain services to members from such countries.

IEEE
445 Hoes Lane
Piscataway, NJ 08854 USA
+1 800 678 4333 (toll free, US & Canada)
+1 732 981 0060 (Worldwide)

For more information or questions regarding your IEEE Membership or IEEE Account, please direct your inquiries to the IEEE Contact Center.