T-NPS Header
T-PS Home  |  Editorial Board  |  T-PS in IEEE Xplore  |   Early Access  |  Manuscript Submission
FEATURED STORIES - JANUARY 2018

Photonic Crystal-Based High-Power Backward Wave Oscillator

by Brian R. Poole and John R. Harris
article one image
An electron beam traversing a slow wave structure can be used to either generate or amplify electromagnetic radiation through the interaction of the slow space charge wave on the beam with the slow wave structure modes. Here, a cylindrical waveguide with a periodic array of conducting loops is used for the slow wave structure. This paper considers operation as a backward wave oscillator. The dispersion properties of the structure are determined using a frequency-domain eigenmode solver. The interaction of the electron beam with the structure modes is investigated using a 2-D particle-in-cell (PIC) code. The operating frequency and growth rate dependence on beam energy and beam current are investigated using the PIC code and compared with analytic and scaling estimates where possible. more...
-----------------------

Arc Voltage Characteristics in Ultrahigh-Pressure Nitrogen Including Supercritical Region

by Fahim Abid, Kaveh Niayesh, Erik Jonsson, Nina Sasaki Støa-Aanensen,and Magne Runde
article two image
A supercritical (SC) fluid is formed when both pressure and temperature of a fluid exceed the critical point, where distinct gas and liquid phases no longer exist. SC fluids demonstrate combined properties of gas and liquid, which make them interesting to investigate them as an arc extinction medium. This paper focuses on the arc voltage characteristics of industrial grade nitrogen subjected to different filling pressures up to 98 bar including SC region. Pressure, arc duration, current, and distance dependence of the arc are investigated by arc voltage measurement. It has been found that arc voltage increases with filling pressure without any abrupt change during the transition from gas into the SC region. Arc duration and current dependence of the arc voltage are not significant in the investigated parameter range. Arc voltage measurement with different electrode gaps suggests that the electrode voltage drop does not vary with filling pressure. more...
-----------------------

Performance Enhancement of a Dielectric Barrier Discharge Vacuum-Ultraviolet Photon Source Using Short-Pulsed Electrical Excitation

by Robert J. Carman, Noah T. Goldberg, Stuart C. Hansen, Nigel Gore, and Deborah M. Kane
article three image
We have studied the electrical and optical characteristics of an air-cooled argon excimer vacuum-ultraviolet lamp (λ ~ 126 nm) excited by a dielectric barrier discharge powered by: 1) pulsed or 2) sinusoidal high-voltage drivers from 32 to 100 kHz. Compared to sinusoidal excitation, pulsed excitation gives nearly ~ 2x higher vacuum-ultraviolet (VUV) output and electrical-to-VUV conversion efficiency at high pressure (800-900 mbar). Visually, the pulse-driven plasma is spatially homogeneous, whereas for sinusoidal excitation the plasma becomes filamentary at higher pressure and/or frequency. Spectral emission is highly monochromatic with most of the output in the desired VUV band (λ = 115-140 nm). With the lamp running at pressure >700 mbar and power loadings >1.6 W/cm3, a sharp spike in VUV output was consistently seen at turn-on. We believe that transient phenomena or favorable initial conditions may be partly responsible for this VUV spike, although the equilibrium VUV output appears to be limited due to thermal dissipation, gas heating, and associated loss of gas from the active region. We propose that we may be observing the same intrinsic VUV spiking phenomena as reported in liquid nitrogen-cooled Xe, Kr, and Ar excimer lamps by Gerasimov et al. More importantly, we believe ours is the first such observation reported for an excimer VUV lamp operating near room temperature. This VUV spiking behavior raises the prospect that designs with improved thermal management may achieve even higher VUV power and efficiency. more...
-----------------------

Development of a 0.6 MV Ultra-Compact Magnetic Core Pulsed Transformer for High Power Applications

by L. Pécastaing, M. Rivaletto, A.S. de Ferron, R. Pecquois, and B. M. Novac
article four image
The generation of high-power electromagnetic waves is one of the major applications in the field of high-intensity pulsed power. The conventional structure of a pulsed power generator contains a primary energy source and a load separated by a power-amplification system. The latter performs time compression of the slow input energy pulse and delivers a high-intensity power output to the load. Usually, either a Marx generator or a Tesla transformer is used as a power amplifier. In the present case, a system termed “module oscillant utilisant une nouvelle architecture” (MOUNA) uses an innovative and very compact resonant pulsed transformer to drive a dipole antenna. This paper describes the ultracompact multiprimary winding pulsed transformer developed in common by the Université de Pau and Hi Pulse Company that can generate voltage pulses of up to 0.6 MV, with a rise time of less than 270 ns. The transformer design has four primary windings, with two secondary windings in parallel, and a Metglas 2605SA1 amorphous iron magnetic core with an innovative biconic geometry used to optimize the leakage inductance. The overall unit has a weight of 6 kg and a volume of only 3.4 L, and this paper presents in detail its design procedure, with each of the main characteristics being separately analyzed. more...
-----------------------
NPSS Logo
header

A PUBLICATION OF THE IEEE NUCLEAR AND PLASMA SCIENCES SOCIETY

JANUARY 2018   |  VOLUME 46  |  NUMBER 1  |  ITPSBD  |  (ISSN 0093-3813)

REGULAR PAPERS
Basic Processes in Fully and Partially Ionized Plasmas
Research on Homogeneous Multilayer DBD Driven by Submicrosecond Pulsed Power at Atmospheric Pressure Air . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Li, X. Li, P. Dong, Y. Xie, J. Long and L. Zhang
Transient Evolution of Argon Radio Frequency Atmospheric Pressure Discharge After the Very First Breakdown . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. Huo, Z. Ding, Y. Ke, and L. Tian
Effect of Nonlinear Screening on a Complex Plasma Phase State . . . . . . . . . . . . . . . . . . . . I. A. Martynova, I. L. Iosilevskiy, and A. A. Shagayda
Numerical Study on Mode Transition Characteristics in Atmospheric-Pressure Helium Pulsed Discharges With Pin–Plane Electrode . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Zhang, Y. Wang, and D. Wang

Microwave Generation and Microwave-Plasma Interaction
Photonic Crystal-Based High-Power Backward Wave Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. R. Poole and J. R. Harris
Two-Wave Cherenkov Oscillator With Moderately Oversized Slow-Wave Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. V. Rostov, A. V. Gunin, R. V. Tsygankov, I. V. Romanchenko, and M. I. Yalandin
A New Amplification Regime for Traveling Wave Tubes With Third-Order Modal Degeneracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F. Yazdi, M. A. K. Othman, M. Veysi, A. Figotin, and F. Capolino
Time-Variant Microwave Absorption by Dielectric Barrier Discharge Plasma in Atmospheric Pressure Helium . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Kim, I. Jung, I.-Y. Oh, D.-S. Kim, and J.-G. Yook
Nonuniform Line Generator for High-Power RF Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Samizadeh Nikoo
The Effects of a Transverse Anisotropy Dielectric Rod in Excitation and Amplification Phenomena of Hybrid Electromagnetic Waves in a
      Cylindrical Metallic Waveguide
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Zahedi, B. Jazi, Z. Rahmani, and S. Kaabomeir
Simulation of TE6,2-to-Gaussian Internal Mode Converter for a 95-GHz Gyrotron . . . . . . . . . . . . S. K., V. Kesari, S. Karmakar, and R. Seshadri

Industrial, Commercial, and Medical Applications of Plasmas
Performance Enhancement of a Dielectric Barrier Discharge Vacuum-Ultraviolet Photon Source Using Short-Pulsed Electrical Excitation . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. J. Carman, N. T. Goldberg, S. C. Hansen, N. Gore, and D. M. Kane
Numerical Investigation on the Electrical Characteristics and Electron Energy Transformation of Pulsed Dielectric Barrier Discharge
     for Ozone Generation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Zhang, X. Liang, J. Li, and L. Wei

Pulsed Power Science and Technology
Simulation and Experiment on Pin-to-Pin Electrostatic Discharge Firing of Bridgewire EED . . . . . . . . . . . . . . . . . . . . N. Yan, Z. Liang, and Z. Lv
An Efficient Structure of Marx Generator Using Buck–Boost Converter . . . . . . . . . . . . . . . . M. Taherian, M. Allahbakhshi, E. Farjah, and H. Givi
An Improved Genetic Algorithm for Multiobjective Optimization of Helical Coil Electromagnetic Launchers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Yang, Z. Liu, T. Shu, L. Yang, J. Ouyang, and Z. Shen
A Repetitive Inductive Pulsed Power Supply Circuit Topology Based on HTSPPT . . . . . . H. Li, Y. Zhang, C. Zhang, M. Gao, Y. An, and T. Zhang
Efficiency of an Exciplex DBD Lamp Excited Under Different Methods . . . . . . . . . . . . . . . . . . . . . . . . D. Florez, D. Schitz, H. Piquet, and R. Diez
Superpower Disk Explosive Magnetic Generators of Electromagnetic Energy for High-Energy Densities Research . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. B. Kudel’kin, L. P. Babich, B. E. Grinevich, A. V. Ivanovskiĭ, A. I. Kraev, and E. V. Shapovalov
Development of a 0.6-MV Ultracompact Magnetic Core Pulsed Transformer for High-Power Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Pécastaing, M. Rivaletto, A. S. de Ferron, R. Pecquois, and B. M. Novac
Modeling and Simulation of Railgun System Driven by Multiple HTSPPT Modules . . . . . . . . . Z. Li, H. Li, X. Zhang, C. Zhang, S. Liu, and T. Lu

Arcs & MHD
Convoluted Arc With Flux Concentrator for Current Interruption . . . . . . . . . . . . . . . . . . . . . . . . . . L. M. Shpanin, G. R. Jones, and J. W. Spencer
Characteristics and Influencing Factors of the Postarc Current in Vacuum DC Interruption . . . . . . . . . . . . . T. Qin, Y. Zhang, E. Dong, and J. Zou
Arc Voltage Characteristics in Ultrahigh-Pressure Nitrogen Including Supercritical Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F. Abid, K. Niayesh, E. Jonsson, N. S. Støa-Aanensen, and M. Runde


Special Issue on Selected Papers from SOFE 2015
Management of the ITER Buildings Configuration for the Construction and Installation Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. Kuehn, J.-J. Cordier, C. Baylard, M. Kotamaki, L. Patisson, J. Reich, and W. Ring

Special Issue on Spacecraft Charging Technology 2017
Spacecraft Charging Related Risk of Floating Connector Pins . . . . . . . . . . . . . . . . . . . . J. J. Likar, K. Hartojo, G. Ott, J. Bird, and N. P. Meredith


ANNOUNCEMENTS
Call for Papers—Special Issue for Selected Papers from EAPPC/BEAMS 2018



Accessibility | Privacy and Opting Out of Cookies | Nondiscrimination Policy

Copyright 2018 IEEE - All rights reserved. Use of this newsletter site signifies your agreement to the IEEE Terms and Conditions.
A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. [Response: Read Receipt]

If you would like to be removed from this email distribution, please [Response: Unsubscribe from List].
If you have unsubscribed in error, please [Response: Subscribe to List].
To unsubscribe from all mailings, use your IEEE Account to update your "Personal Profile and Communication Preferences."

Replies to this message will not reach IEEE. Due to local email service/provider settings, random characters may appear in some instances.

Although the IEEE is pleased to offer the privilege of membership to individuals and groups in the OFAC embargoed countries, the IEEE cannot offer certain services to members from such countries.

IEEE
445 Hoes Lane
Piscataway, NJ 08854 USA
+1 800 678 4333 (toll free, US & Canada)
+1 732 981 0060 (Worldwide)

For more information or questions regarding your IEEE Membership or IEEE Account, please direct your inquiries to the IEEE Contact Center.