T-NPS Header
T-PS Home  |  Editorial Board  |  T-PS in IEEE Xplore  |   Early Access  |  Manuscript Submission
FEATURED STORIES - FEBRUARY 2018

Influence of Collector Plasma on the Performance of an L-Band MAC-MILO

by Fen Qin, Sha Xu, Lu-Rong Lei, Bing-quan Ju, and Dong Wang
article one image
The influence of collector plasma has been investigated for an L-band magnetically insulated line oscillator (MILO) with metal array cathode (MAC), which showed obvious performance degradation after 3000 shots in repetitive mode. Positive ion emission model is applied to simulate plasma generation from the collector surface. Different types of positive ions have been applied to simulate different collector materials. The simulation results reveal that the collector plasma has a significant influence on the output characteristics of the original MAC-MILO. The ladder cathode structure is introduced to reduce plasma formation rate on the collector surface. The simulation and experimental results show that the optimized structure reduces the influence of collector plasma successfully. more...
-----------------------

A Compact Double-Exponential Current Generator Based on the Cage Cavity Consisted of Multisteel Rods

by Hanyu Wu, Xinjun Zhang, Weixi Luo, Mo Li, Jinhai Zhang, and Shaoguo Zhang
article two image
We describe a current generator which consists of the Marx, the current-limited resistors, and the output port and can produce a double-exponential current waveform with the 3 kA, the rise time 10 ns, the pulsewidth 100 ns following the requirement of the IEC 61000-4-25 standard, while the effective impedance of the tested systems does not exceed 2 Ω . A new cavity of Marx is constructed by 12 steel rods which help assembly work more convenient; moreover, the current waveform has less disturbed signal. Because of using the cavity, the charging, trigger, and grounded circuits can be installed out of the Marx. Meanwhile, the cantilever insulated support of Marx also is used. The methods above can help make a compact current generator with a low inductance which can be beneficial to research the electromagnetic coupling laws of system circuit ports and chips. more...
-----------------------

Exploration of Collector Materials in High-power Microwave Sources

by Yuqin Liang, Jun Sun, Shaofei Huo, Hao Shao, Changhua Chen, Xiaowei Zhang, Yuchuan Zhang, Ping Wu, and Yibing Cao
article three image
The plasma effects of energetic electron bombardment on component materials severely limit the output pulsed energies of high-power microwave (HPM) sources. This paper proposes a feasible method for choosing materials for beam collectors in HPM devices. First, electron energy deposition in metal materials is theoretically and numerically investigated. Considering the energy threshold resulting in material ablation, the resilience of several metals to intense relativistic electron beam (IREB) bombardment is compared. This resilience is mainly determined by the material density and melting point. Titanium shows good resilience compared with stainless steel, copper, molybdenum, and tungsten. With an incident 780 keV, 9.5-kA IREB, the maximum deposition energy in titanium just slightly exceeds its ablation threshold. Thus, the theoretical results indicate that titanium is a promising material for application in HPM devices. The experimental results validate the theoretical analyses. Compared with the conventional stainless steel collector, the titanium collector has better stability and lifetime. We intend to investigate more materials in future studies. more...
-----------------------
NPSS Logo
header

A PUBLICATION OF THE IEEE NUCLEAR AND PLASMA SCIENCES SOCIETY

FEBRUARY 2018   |  VOLUME 46  |  NUMBER 2  |  ITPSBD  |  (ISSN 0093-3813)
PART I OF TWO PARTS

SPECIAL ISSUE ON MICROPROPULSION AND CUBESATS


Guest Editorial
Special Issue on Micropropulsion and Cubesats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. Levchenko, M. Keidar, S. Xu, and F. Taccogna


SPECIAL ISSUE PAPERS
Miniaturized Electrospray Thrusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Henning, K. Huhn, L. W. Isberner, and P. J. Klar
How to Build PIC-MCC Models for Hall Microthrusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. Minelli and F. Taccogna
Electron Acceleration and Diffusion in the Gyrophase Space by Low-Frequency Electromagnetic Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Huang, X.-T. Gao, X.-G. Wang, and Z.-B. Wang
Miniaturized Plasma Sources: Can Technological Solutions Help Electric Micropropulsion? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O. O. Baranov, S. Xu, L. Xu, S. Huang, J. W. M. Lim, U. Cvelbar, I. Levchenko, and K. Bazaka
Hall Thrusters With Permanent Magnets: Current Solutions and Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Lorello, I. Levchenko, K. Bazaka, M. Keidar, L. Xu, S. Huang, J. W. M. Lim, and S. Xu
Development of High-Density Radio Frequency Plasma Sources With Very Small Diameter for Propulsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Shinohara, D. Kuwahara, T. Ishii, H. Iwaya, S. Nishimura, T. Yamase, D. Arai, and H. Horita
Overview of Hall Electric Propulsion in China . . . . . . . . D. Yongjie, L. Hong, W. Liqiu, H. Yanlin, S. Yan, L. Hui, N. Zhongxi, M. Wei, and Y. Daren
Experimental Characterization of the Inline-Screw-Feeding Vacuum-Arc-Thruster Operation . . . . . . . I. Kronhaus, M. Laterza, and A. R. Linossier
Development and Calibration of a Variable Range Stand for Testing Space Micropropulsion Thrusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. W. A. B. Rohaizat, M. Lim, L. Xu, S. Huang, I. Levchenko, and S. Xu
Sitael Hollow Cathodes for Low-Power Hall Effect Thrusters . . . . . . . . . . . . . . . . D. Pedrini, C. Ducci, T. Misuri, F. Paganucci, and M. Andrenucci
Concept of a Magnetically Enhanced Vacuum Arc Thruster With Controlled Distribution of Ion Flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O. O. Baranov, U. Cvelbar, and K. Bazaka
Operation of a Hollow Cathode Neutralizer for Sub-100-W Hall and Ion Thrusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. R. Lev and G. Alon
CubeSat Lunar Positioning System Enabled by Novel On-Board Electric Propulsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Wijnen, N. Agüera-Lopez, S. Correyero-Plaza, and D. Perez-Grande
Characteristics and Performances of a 100-W Hall Thruster for Microspacecraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Mazouffre and L. Grimaud
Precise Calibration of Propellant Flow and Forces in Specialized Electric Propulsion Test System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. W. M. Lim, S. Huang, Y.-F. Sun, L. Xu, R. Z. W. Sim, J. S. Yee, Z. Zhang, I. Levchenko, and S. Xu
Automated Integrated Robotic Systems for Diagnostics and Test of Electric and Micropropulsion Thrusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. W. M. Lim, S. Y. Huang, L. Xu, J. S. Yee, R. Z. Sim, Z. L. Zhang, I. Levchenko, and S. Xu


PART II OF TWO PARTS

REGULAR PAPERS
Basic Processes in Fully and Partially Ionized Plasmas
Research on the Breakdown Process of Needle-Shaped Electrode Switch in Air . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. Shi and Q. Zhang
Numerical Study of Plasma–Electrode Interaction During Arc Discharge in a DC Plasma Torch . . . . . . . . . . . . . . . . . . . . . . . P. Liang and R. Groll

Microwave Generation and Microwave-Plasma Interaction
Impact of Reentry Speed on the Transmission of Obliquely Incident THz Waves in Realistic Plasma Sheaths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Yuan, J. Chen, L. Shen, X. Deng, M. Yao, and L. Hong
Influence of Collector Plasma on the Performance of an L-Band MAC-MILO . . . . . . . . . . . . . . . . . . . . F. Qin, S. Xu, L.-R. Lei, B. Ju, and D. Wang

Charged Particle Beams and Sources
Exploration of Collector Materials in High-Power Microwave Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Liang, J. Sun, S. Huo, H. Shao, C. Chen, X. Zhang, Y. Zhang, P. Wu, and Y. Cao

High Energy Density Plasmas and Their Interactions
On the Cutoff Distance and the Classical Energy-Averaged Electron–Ion Momentum Transport Cross Section in Ideal and Nonideal Plasmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. R. Zaghloul

Industrial, Commercial, and Medical Applications of Plasmas
Permanent Magnet Chassis for UV Light and Plasma Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. R. Hyde, A. S. Taylor, and O. V. Batishchev

Plasma Diagnostics
Multiple Laser System for High-Resolution Thomson Scattering Diagnostics on the EAST Tokamak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Han, A. Hu, D. Li, S. Xiao, B. Tian, Q. Zang, J. Zhao, C. Hsieh, X. Gong, L. Hu, G. Xu, and the EAST Team

Pulsed Power Science and Technology
Research on the Prebreakdown Current of the Laser-Triggered Vacuum Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Huang, B. Xiang, X. Cao, Y. Zong, Z. He, X. Mao, and Y. Zhang
The Propagation of Stress Wave in the PZT-5H Composite Target and the Influence of Load Resistance on the Electrical Output Under the Strong Shock Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E. Tang, Y. Li, R. Wang, Y. Han, L. He, S. Liu, M. Wang, S. Xiang, and Z. Li
A Compact Double-Exponential Current Generator Based on the Cage Cavity Consisted of Multisteel Rods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Wu, X. Zhang, W. Luo, M. Li, J. Zhang, and S. Zhang
A Two-Stage DSRD-Based High-Power Nanosecond Pulse Generator . . . . . . . . . . . . . M. Samizadeh Nikoo, S. M.-A. Hashemi, and F. Farzaneh

Arcs & MHD
Study of Impact Process of Air Arc on the Chamber Shell Based on the Interaction of Fluid–Structure Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Wang, Y. Wang, Y. Li, Z. Li, S. Jia, H. Liu, and R. Guan
Cooling Mechanisms of Switching Arcs Under Transverse Magnetic Fields in Comparison With Arcs Without Magnetic Blast . . . . . M. Lindmayer

Fusion Science and Technology
Integration Concept of the Reflectometry Diagnostic for the Main Plasma in DEMO . . . . . . . . . . . . . . . . . . . . A. Malaquias, A. Silva, R. Moutinho, R. Luis,  A. Lopes,  P. B. Quental,  L. Prior,  N. Velez,  H. Policarpo,  A. Vale,  W. Biel,  J. Aubert,  M. Reungoat,  F. Cismondi,   and   T. Franke

Electromagnetic Launch Science and Technology
Multipole Field Reconnection Electromagnetic Launcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Dong and S. Li


ANNOUNCEMENTS
Call for Papers—Special Issue for Selected Papers from EAPPC/BEAMS 2018
Call for Papers—The 15th Workshop on the Physics of Dusty Plasmas


Accessibility | Privacy and Opting Out of Cookies | Nondiscrimination Policy

Copyright 2018 IEEE - All rights reserved. Use of this newsletter site signifies your agreement to the IEEE Terms and Conditions.
A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. [Response: Read Receipt]

If you would like to be removed from this email distribution, please [Response: Unsubscribe from List].
If you have unsubscribed in error, please [Response: Subscribe to List].
To unsubscribe from all mailings, use your IEEE Account to update your "Personal Profile and Communication Preferences."

Replies to this message will not reach IEEE. Due to local email service/provider settings, random characters may appear in some instances.

Although the IEEE is pleased to offer the privilege of membership to individuals and groups in the OFAC embargoed countries, the IEEE cannot offer certain services to members from such countries.

IEEE
445 Hoes Lane
Piscataway, NJ 08854 USA
+1 800 678 4333 (toll free, US & Canada)
+1 732 981 0060 (Worldwide)

For more information or questions regarding your IEEE Membership or IEEE Account, please direct your inquiries to the IEEE Contact Center.