T-PS Header
T-NS Home  |   Editorial Board  |   T-NS in IEEE Xplore  |    Early Access  |   Manuscript Submission
FEATURED STORIES - NOVEMBER 2017

Radiation Damage in Silicon Photonic Mach-Zehnder Modulators and Photodiodes

by Marcel Zeiler, Sarah Seif El Nasr-Storey, Stephane Detraz, Andrea Kraxner, Lauri Olantera, Carmelo Scarcella, Christophe Sigaud, Csaba Soos, Jan Troska, and Francois Vasey


Radiation-hard optical links are the backbone of read-out systems in high-energy physics (HEP) experiments at CERN. The optical components must withstand large doses of radiation and strong magnetic fields and provide high data rates. Radiation hardness is one of the requirements that become more demanding with every new generation of HEP experiment. Previous studies have shown that vertical cavity surface emitting lasers, on which the current optical links are based, will not be able to withstand the expected radiation levels in the innermost regions of future HEP experiments. Silicon photonics (SiPh) is currently being investigated as a promising alternative technology to address this challenge. We irradiated SiPh Mach-Zehnder modulators (MZMs) with different design parameters to evaluate their resistance against ionizing radiation. We confirm that SiPh MZMs with a conventional design do not show a phase shift degradation when exposed to a 20-MeV neutron fluence of 3⋅1016 n/cm2. We further demonstrate that custom-designed MZMs with shallow etch optical waveguides and high doping concentrations in their p-n junctions exhibit a strongly improved radiation hardness over devices with a conventional design when irradiated with X-rays. We also found that MZMs withstood higher radiation levels when they were irradiated at a low temperature. In contrast, larger reverse biases during irradiation led to a faster device degradation. Simulations indicate that a pinch-off of holes is responsible for the device degradation. Photodiodes (PDs) were also tested for their radiation hardness as they are needed in silicon photonic transceivers. X-ray irradiation of building-block germanium-silicon PDs showed that they were not significantly affected. more...
 
-----------------------

A Spherical Active Coded Aperture for 4π Gamma-Ray Imaging

by Daniel Hellfeld, Paul Barton, Donald Gunter, Lucian Mihailescu, and Kai Vetter


Gamma-ray imaging facilitates the efficient detection, characterization, and localization of compact radioactive sources in cluttered environments. Fieldable detector systems employing active planar coded apertures have demonstrated broad energy sensitivity via both coded aperture and Compton imaging modalities. However, planar configurations suffer from a limited field of view, especially in the coded aperture mode. To improve upon this limitation, we introduce a novel design by rearranging the detectors into an active coded spherical configuration, resulting in a 4π isotropic field of view for both coded aperture and Compton imaging. This paper focuses on the low-energy coded aperture modality and the optimization techniques used to determine the optimal number and configuration of 1-cm3 CdZnTe coplanar grid detectors on a 14-cm diameter sphere with 192 available detector locations. more...
 
-----------------------

A PUBLICATION OF THE IEEE NUCLEAR AND PLASMA SCIENCES SOCIETY

NOVEMBER 2017   |  VOLUME 64  |  NUMBER 11  |  IETNAE  |  (SSN 0018-9499)

REGULAR PAPERS
NUCLEAR POWER INSTRUMENTATION AND CONTROL

Effect of Gamma-Ray and Neutron Heating as Interfering Input for the Measurement of Temperature Using Optical Fiber Sensor System . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. E. Blue and B. A. Wilson

RADIATION EFFECTS
Radiation-Induced Single-Event Effects on the Van Allen Probes Spacecraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . R. H. Maurer, K. Fretz, M. P. Angert, D. L. Bort, J. O. Goldsten, G. Ottman, J. S. Dolan, G. Needell, and D. Bodet
Radiation Damage in Silicon Photonic Mach–Zehnder Modulators and Photodiodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . M. Zeiler, S. S. El Nasr-Storey, S. Detraz, A. Kraxner, L. Olantera, C. Scarcella, C. Sigaud, C. Soos, J. Troska, and F. Vasey
The Latest Jovian-Trapped Proton and Heavy Ion Models . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Garrett, I. Jun, R. Evans, W. Kim, and D. Brinza
Evolution and Impact of Defects in a p-Channel CCD After Cryogenic Proton-Irradiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Wood, D. J. Hall, J. Gow, J. Skottfelt, N. J. Murray, K. Stefanov, and A. D. Holland
Mitigating Deep Dielectric Charging Effects in Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . Y. Xiangqian, C. Hongfei, Z. Qiugang, W. Jianzhao, S. Weihong, Z. Hong, Z. Jiqing, Z. Weiying, C. Zhe, S. Sipei, and J. Xianghong
Evaluation of Cable SGEMP Response Using Monte Carlo and Finite-Difference Time-Domain Methods . . . . . . . . . . . . . . . . Z. Xu and C. Meng


RADIATION INSTRUMENTATION
A Spherical Active Coded Aperture for 4π Gamma-Ray Imaging . . . . . . . . . . . . . . D. Hellfeld, P. Barton, D. Gunter, L. Mihailescu, and K. Vetter
Remote Online Performance Evaluation of Photomultiplier Tube and Electronics of DPCAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. S. Reddy, R. A. R. Kumar, M. G. Mathews, and G. Amarendra
Optimal Pulse Processing, Pile-Up Decomposition, and Applications of Silicon Drift Detectors at LCLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Blaj, C. J. Kenney, A. Dragone, G. Carini, S. Herrmann, P. Hart, A. Tomada,
     J. Koglin,  G. Haller,  S. Boutet,  M. Messerschmidt,  G. Williams,  M. Chollet,  G. Dakovski,  S. Nelson,  J. Pines,  S. Song,  and  J. Thayer

Multiview Positron Attenuation Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. C. Watson
Novel Neutron Detector Material: Microcolumnar LixNa1−x I:Eu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . M. S. J. Marshall, M. J. More, H. B. Bhandari, R. A. Riedel, S. Waterman, J. Crespi, P. Nickerson, S. Miller, and V. V. Nagarkar
Origin of Low-Energy Spurious Peaks in Spectroscopic Measurements With Silicon Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Giacomini, A. Huber, R. Redus, and S. Rescia


REAL TIME SYSTEMS
Data Handling in EAST Remote Participation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Sun, F. Wang, Y. Wang, and S. Li
A Hardware Implementation of the Levinson Routine in a Radio Detector of Cosmic Rays to Improve a Suppression
     of the Nonstationary RFI
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Szadkowski
Fast Intra Bunch Train Charge Feedback for FELs Based on Photo Injector Laser Pulse Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Kozak, B. Steffen, S. Pfeiffer, S. Schreiber, and A. Napieralski

Accessibility | Privacy and Opting Out of Cookies | Nondiscrimination Policy

Copyright 2017 IEEE - All rights reserved. Use of this newsletter site signifies your agreement to the IEEE Terms and Conditions.
A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. [Response: Read Receipt]

If you would like to be removed from this email distribution, please [Response: Unsubscribe from List].
If you have unsubscribed in error, please [Response: Subscribe to List].
To unsubscribe from all mailings, use your IEEE Account to update your "Personal Profile and Communication Preferences."

Replies to this message will not reach IEEE. Due to local email service/provider settings, random characters may appear in some instances.

Although the IEEE is pleased to offer the privilege of membership to individuals and groups in the OFAC embargoed countries, the IEEE cannot offer certain services to members from such countries.

IEEE
445 Hoes Lane
Piscataway, NJ 08854 USA
+1 800 678 4333 (toll free, US & Canada)
+1 732 981 0060 (Worldwide)

For more information or questions regarding your IEEE Membership or IEEE Account, please direct your inquiries to the IEEE Contact Center.