by Qiao Liu, Yinghui Liu, Xinjian Niu, Jianhua Xu, and Jianing Zhao
 In this paper, a multifrequency, multimode gyrotron has been designed, which can operate at 28, 29, 31, and 32 GHz with corresponding modes TE0.3, TE+5.2, TE−3.3, and TE+6.2, respectively. For all operating status, the mode competitions have been investigated carefully with the help of a new time-dependent, multimode, self-consistent code, which is built on the trajectory approach. For the operating at 28 GHz, it also has been simulated by CST Particle Studio. They have similar results when comparing two results. For the operating at other status, the changes of electron parameters caused by the changed dc-magnetic field have been analyzed in detail. In the analyzes, the guiding center radius and Larmor radius would not be influenced severely, but the velocity ratio would be influenced seriously, such as, the velocity ratio of operating at 32 GHz would be reduced to about 0.9787, which caused a severe reduction in the efficiency. In order to alleviate the influences, a compensation magnetic coil (CMC) has been used in the magnetron injection gun region, in which the changes of electron parameters have been analyzed too. The simulation results show that the electron efficiency of operating at 32 GHz can be increased from 24.6% to 31% by applying CMC. The multimode multifrequency gyrotron operated at ka-band gyrotron has been investigated in theory, which can provide new possibilities in high-power millimeter source development. more... |
REGULAR PAPERS
Basic Processes in Fully and Partially Ionized Plasmas
Plasma Response to Resonant Magnetic Perturbations in Large Aspect Ratio Tokamaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. C. Fraile Jr., M. Roberto, I. L. Caldas, and C. G. L. Martins
Comparison of the Linear and Spanwise-Segmented DBD Plasma Actuators on Flow Control Around a NACA0015 Airfoil . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Akbıyık, H. Yavuz, and Y. E. Akansu
Microwave Generation and Microwave-Plasma Interaction
Analysis on the Characteristics of EM Waves Propagation in the Plasma Sheath Surrounding a Hypersonic Vehicle . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Yang, B. Wei, and W. Yin
Numerical Investigation of the Surface Wave Formation in a Microwave Plasma Torch . . . . . . . . . . . . . . W. Zhang, J. Tao, K. Huang, and L. Wu
Magnetron Coupling to Sulfur Plasma Bulb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. P. Koulakis, A. L. F. Thornton, and S. Putterman
Electron Cyclotron Resonance Gain in the Presence of Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. Cole and T. M. Antonsen, Jr.
Theoretical Investigation on a Multifrequency Multimode Gyrotron at Ka-Band . . . . . . . . . . . . . . . . . . . . Q. Liu, Y. Liu, X. Niu, J. Xu, and J. Zhao
Charged Particle Beams and Sources
Emittance Growth in the DARHT-II Linear Induction Accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Ekdahl, C. A. Carlson, D. K. Frayer, B. T. McCuistian, C. B. Mostrom, M. E. Schulze, and C. H. Thoma
Analytical Modeling of Low Erosion Extraction Grid for Ion Thruster . . . . . . . . . . . . . . S. E. Rahaman, A. K. Singh, S. K. Shukla, and R. K. Barik
High Energy Density Plasmas and Their Interactions
PF1000 High-Energy Plasma Focus Device Operated With Neon as a Copious Soft X-Ray Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Akel, S. Ismael, S. Lee, S. H. Saw, and H. J. Kunze
Industrial, Commercial, and Medical Applications of Plasmas
Metal Sulfates Enhanced Plasma Oxidization of Diesel Particulate Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Yao, X. Shen, H. Lu, D. Ni, X. Tang, Z. Wu, J. Han, and X. Zhang
Plasma Diagnostics
Morphological Image Analysis of Surface Dielectric Barrier Discharge at Atmospheric Air . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Zhang, T. Qin, J. Li, Y. Wu, A. Mizuno, and K. Shang
Pulsed Power Science and Technology
Performance Comparison of ETT- and LTT-Based Pulse Power Crowbar Switch . . . . . . . . . . . . . . . . . . . . . . . T. G. Subhash Joshi and V. John
Analysis of a Piezoelectric Generator Under an Elastic Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S.-M. Han and C.-S. Huh
Arcs & MHD
Numerical Analysis and Optimization of Miniature Electrohydrodynamic Air Blowers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. A. Ramadhan, N. Kapur, J. L. Summers, and H. M. Thompson
Modeling of Magnetohydrodynamics in Nozzle Arc: A Mathematically and Numerically Efficient Approach . . . . . . . S. P. Pawar and A. Sharma
Fusion Science and Technology
A 3-D Smoothed-Particle Hydrodynamics Model of Electrode Erosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. A. Rodriguez and J. T. Cassibry
Special Issue for Selected Papers from EAPPC/BEAMS/MEGAGAUSS 2016
Single-Turn Magnet With an Additional Balanced Winding and Flux Concentrators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . G. A. Shneerson, K. A. Danilin, A. P. Nenashev, A. A. Parfentiev, A. A. Pozdeev, D. A. Dyogtev, and D. Petrov
Two-Section Pulse Current Generator for Concrete and Rocks Destruction by Splitting Off∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. S. Yudin, N. V. Voitenko, and N. S. Kuznetsova
Special Issue on Vacuum Discharge Plasmas (ISDEIV-PS) 2016
Numerical Simulation of Plasma Near the Cathode Spot of Vacuum Arc . . . . . . . . . . . . D. L. Shmelev, S. A. Barengolts, and M. M. Tsventoukh
ANNOUNCEMENTS
Call for Papers—Special Issue on Selected Papers of the 16th Latin American Workshop on Plasma Physics
Call for Papers—Special Issue on Pulsed Power Science and Technology
Call for Papers—Special Issue of IEEE Transactions on Plasma Science on High-Power Microwave Generation
Call for Papers—7th Special Issue of the IEEE Transactions on Plasma Science Z-Pinch Plasmas
Call for Papers—Special Issue for Plenary and Invited Papers from the Chinese National Conference on Plasma Science and Technology
|