by Mahdi Rahmanzadeh, Hamid Rajabalipanah, and Ali Abdolali
 For the first time, the combinational use of plasma medium and graphene sheets is theoretically proposed for stealth applications. The designed structure is a perfect-electric-conductor-backed thin composite material, including a foam layer, multilayer graphene sheets, and a plasma slab, which is topped by a monolayer graphene. The simultaneous use of the lossy characteristics of plasma and graphene layers in the lower and upper parts of the frequency band, respectively, results in a new type of broadband radar absorbing structures. An analytical approach based on the transmission line theory has been utilized to demonstrate the effects of structural parameters on the reflection/absorption specifications. The performance of the designed structures is significantly improved in terms of both the total thickness and bandwidth compared with the previously published plasma-based absorbers. The role of each layer in the final absorption behavior is also investigated by an impedance transformation method. The structure exhibits good performance at oblique incidences for different polarizations. Therefore, according to different advantages such as lower thickness, wider bandwidth, and additional flexibility in design, this new type of absorbers has a positive future for the design of stealth military platforms. more... |
REGULAR PAPERS
Basic Processes in Fully and Partially Ionized Plasmas
Study of a Nonequilibrium Plasma Model of Surface Discharge and the Influencing Factors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. Sima, C. Liu, M. Yang, H. Xu, and Q. Shao
Fundamental Properties of the High Pressure Hydrogen Microdischarges in Static and Time-Varying Electric Fields. . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Klas, L. Moravsky, Š. Matejčik, B. Radjenović, and M. Radmilović-Radjenović
Time Evolution of Tsallis Distribution in Paul Trap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. Saxena and K. Shah
Microwave Generation and Microwave-Plasma Interaction
Microwave Plasma Generation With Resonance Frequency Tracking and Power Regulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. K. Kwon, S.-J. Park, I. H. Won, C. Ahn, and J.-Y. Sim
Multiphysical Study of an Atmospheric Microwave Argon Plasma Jet. . . . . . . . . . . . . . . . . . . . . . . . . . C. Schopp, H. Heuermann, and M. Marso
Evaluations of Plasma Stealth Effectiveness Based on the Probability of Radar Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Xu, B. Bai, C. Dong, Y. Dong, Y. Zhu, and G. Zhao
Analytical Investigation of Ultrabroadband Plasma–Graphene Radar Absorbing Structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Rahmanzadeh, H. Rajabalipanah, and A. Abdolali
Charged Particle Beams and Sources
Simulation Study on Duoplasmatron With Optimization of Ion Beam Extraction System. . . . . . . . . . . . . . . . . . . . . . . . . S.-H. Park and Y.-S. Kim
Influence of Surface Microstructures on Explosive Electron Emission Properties for Graphite Cathodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Hua, H. Wan, X. Chen, B. Chen, P. Wu, and S. Bai
Pulsed Power Science and Technology
Discharge Characteristics of a Dual-Electrode Gas Switch Triggered by Ejected Plasma in N2 and SF6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Liu, X. Liu, X. Shen, L. Feng, W. Tie, and Q. Zhang
PWM Voltage Droop Compensation for Bipolar Solid-State Marx Generator Topologies. . . . . . . . . . H. Canacsinh, J. F. Silva, and L. M. Redondo
Analysis of the Velocity and Current Measurement Method Based on B-Dot Probes for the Rail Gun. . . . . . . . . . . . . . . . . . . . . R. Cao and X. Xu
Optical Absorption of Quartz Fibers at Pulsed Irradiation With High-Energy γ -Quanta. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . A. N. Moiseenko, I. M. Markevtsev, O. M. Tatsenko, V. V. Platonov, A. V. Filippov, E. A. Bychkova, I. V. Victorov, and A. Y. Kopkin
Properties of Loss Front in Long Magnetically Insulated Transmission Lines. . . . . . . . . . . . . . . . . . . . . . . . . . W. Luo, H. Wang, Y. Li, and Q. Han
Effects of Cell-Driving Jitters on the Output Voltage of Magnetically Insulated Induction Voltage Adders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Hu, J. Zeng, F. Sun, P. Cong, H. Wei, T. Sun, T. Liang, Z. Su, and A. Qiu
Discharge Analysis of EAST H-Mode for Designing Compressed Plasma. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Q. Hang and G. Li
Coilgun Velocity Optimization With Current Switch Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. B. Perotoni, M. Mergl, and V. A. Bernardes
Current Pulse Polarity Effect on Metallized Film Capacitors Failure. . . . . . . . . . . V. Belko, D. Glivenko, O. Emelyanov, I. Ivanov, and A. Plotnikov
Inductance Calculation and Energy Density Optimization of the Tightly Coupled Inductors Used in Inductive Pulsed Power Supplies. . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Liu, X. Yu, and Z. Li
Arcs & MHD
Investigation on Arc Dwell and Restriking Characteristics in DC High-Power Relay. . . . . . . . . . . . . . . . . . . . . . . . . . . K. Bo, X. Zhou, and G. Zhai
Special Issue on Atmospheric Pressure Plasma Jets and Their Applications
Effect of Electrical Parameters on Energy Yield of Organic Pollutant Degradation in a Dielectric Barrier Discharge Reactor. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Zhao, C. Hao, D. Xu, Y. Wen, J. Qiu, and K. Liu
Special Issue on Plenary and Invited Papers from ICOPS 2016
The Path to a Transportable Ionospheric Heater—Tuning Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Esser, S. R. Beeson, J. C. Dickens, J. J. Mankowski, T. M. Antonsen, Jr., and A. A. Neuber |