T-NPS Header
T-PS Home  |  Editorial Board  |  T-PS in IEEE Xplore  |   Early Access  |  Manuscript Submission
FEATURED STORIES - AUGUST 2017

"Anode Modes in Vacuum Arcs: Update"

by H. Craig Miller

This paper discusses the seven different anode discharge modes which can occur in a vacuum arc. These modes are diffuse arc (low current, with or without anode sputtering), footpoint and plume (intermediate current), plus anode spot (two types), and intense arc (high current). The plume and Type 2 anode spot modes may occur just for certain materials, since they have been seen only with CuCr electrodes. Descriptions of the various spot modes are presented, based primarily on experimental results. The effects of external magnetic fields on anode modes are briefly stated. Arc column modes are also discussed, but only as they correspond to anode modes. more...

"Radial Wire-Array Rod-Pinch Diodes"

by Sergey A. Sorokin

This paper presents the results of experiments on the low-impedance diode formation in the configuration of a rod-pinch diode shorted with a radial wire array. It has been found that using an axially asymmetric configuration with a radial wire array instead of an axisymmetric configuration with a radial foil does not substantially modify the focusing of the electron beam on the tip of the rod. Radial wire rod-pinches driven by the MIG generator (1 MV, 2 MA, 80 ns) produce 10-ns long X-ray pulses with the peak dose rate up to 1.1×108 rad/s and the total dose per pulse up to 2 rad. 0.8-mm size point-like X-ray sources attractive for off-axis radiography were observed. more...

"Method to Achieving High-Power Microwaves in Air and Argon"

by Mladen M. Kekez

The paper summarizes the results of the microwave generation in atmospheric air and argon at high pressure. The method how to proceed to achieving higher power level is presented. Two experimental setups were considered. Attention is paid to the interactions between the frequencies in the resonant cavity i.e., the coherence effect. The objective is to get reproducible data and the generation of the microwave emission at the single frequency to avoid the coherence effect. The electrons in the cavity are created by the electric field and by the photoionization, enabling the population inversion to be obtained. Because of the electron impact with N2 in air, molecules cannot lose this energy by photon emission, their excited vibrational levels are metastable and live for a long time. The microwave pulse of long duration can be generated. The various radiation lines created in the resonant cavity are noted. more...

"The Differential Absorption Hard X-Ray Spectrometer at the Z Facility"

by Kate S. Bell, Christine A. Coverdale, David J. Ampleford, James E. Bailey, Guillaume Loisel, Victor Harper-Slaboszewicz, Jens Schwarz, and Kenneth Moy

The differential absorption hard X-ray (DAHX) spectrometer is a diagnostic developed to measure time-resolved radiation between 60 keV and 2 MeV at the Z Facility. It consists of an array of seven Si PIN diodes in a tungsten housing that provides collimation and coarse spectral resolution through differential filters. DAHX is a revitalization of the hard X-ray spectrometer that was fielded on Z prior to refurbishment in 2006. DAHX has been tailored to the present radiation environment in Z to provide information on the power, spectral shape, and time profile of the hard emission by plasma radiation sources driven by the Z machine. more...
-----------------------

A PUBLICATION OF THE IEEE NUCLEAR AND PLASMA SCIENCES SOCIETY

AUGUST 2017   |  VOLUME 45  |  NUMBER 8  |  ITPSBD  |  (ISSN 0093-3813)

SPECIAL ISSUE ON SPACECRAFT CHARGING TECHNOLOGY


GUEST EDITORIAL
Special Issue on Spacecraft Charging Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Rodgers


SPECIAL ISSUE PAPERS
Spacecraft Charging Mitigation
Computer Simulations and Experimental Verification of the Nanoconductivity Concept for the Spacecraft Electronics . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. Saenko, A. Tyutnev, A. Abrameshin, and G. Belik
Initial Results From the Active Spacecraft Potential Control Onboard Magnetospheric Multiscale Mission . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. Nakamura, K. Torkar,
      M. Andriopoulou, H. Jeszenszky, C. P. Escoubet, F. Cipriani, P. A. Lindqvist, S. A. Fuselier, C. J. Pollock, B. L. Giles,  and  Y. Khotyaintsev

Solar Array Plasma Interactions
Initial Results From an In-Orbit High-Voltage Experimental Platform: HORYU-IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Shimizu, H. Fukuda, N. T. Su, K. Toyoda, M. Iwata, and M. Cho
Influence of Different Parameters on Flashover Propagation on a Solar Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. Inguimbert, J.-M. Siguier, P. Sarrailh, J.-C. Matéo-Vélez, D. Payan, G. Murat, and C. Baur
Mission Results Analysis of High-Voltage Technology Demonstration Satellite HORYU-II . . . . . . . . . . . . . . H. Fukuda, K. Toyoda, and M. Cho
Secondary Arcing Triggered by Hypervelocity Impacts on Solar Panel Rear-Side Cables With Defects—Comparison
     With Laser Impacts
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J.-M. Siguier, V. Inguimbert, G. Murat, and D. Payan

Theory, Modeling and Simulation
Prospects of Using a Pulsed Electrostatic Tractor With Nominal Geosynchronous Conditions . . . . . . . . . . . . . . . . . . J. Hughes and H. Schaub
Sunlight Illumination Models for Spacecraft Surface Charging . . . . . . . . . . . . . . . . . . . . . . . . . . S. Grey, R. Marchand, M. Ziebart, and R. Omar
Modeling of DMSP Surface Charging Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. A. Davis, M. J. Mandell, D. C. Ferguson, and D. L. Cooke
Modeling of Spacecraft Charging Dynamics Using COULOMB-2 Code . . . . . . . . . . . . . . . . . . L. S. Novikov, A. A. Makletsov, and V. V. Sinolits
Analysis of Recollection and Transfer of Electrons Emitted from Charged Spacecraft Surface Using Coulomb-2 Code . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. S. Novikov, A. A. Makletsov, and V. V. Sinolits
Ionospheric Langmuir Probe Electron Temperature Asymmetry and Magnetic Field Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . R. Marchand

Internal Charging
Modeling of Electric Fields Inside Spacecraft Dielectrics Using In-Orbit Charging Current Data . . . . . . . . . . . . K. A. Ryden and A. D. P. Hands
Analysis of Charge Transport and Ionization Effect in Space-Used Polymers Under High-Energy Electron Irradiation . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T. Paulmier, B. Dirassen, D. Payan, and M. Arnaout
Experimental Measurement of Low-Intensity and Long-Duration Internal Charging Behavior . . . . . . . . . . . . . . . . . . . . . A. Hands and K. Ryden
1-D Physical Model of Charge Distribution and Transport in Dielectric Materials Under Space Radiations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. Pacaud, T. Paulmier, and P. Sarrailh
PEA System Modeling and Signal Processing for Measurement of Volume Charge Distributions in Thin Dielectric Films . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. H. Pearson, J. R. Dennison, E. W. Griffiths, and A. C. Pearson

Space Weather Effects and Specification
Soft Proton Fluxes in and Around the Earth’s Magnetotail . . . . . . . . . . . . . . . . . . . . . D. Budjáš, P. Nieminen, P. Jiggens G. Santin, and E. Daly
Voltage Threshold and Power Degradation Rate for GPS Solar Array Arcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. C. Ferguson, R. C. Hoffmann, D. P. Engelhart, and E. A. Plis
Onset of Spacecraft Charging and Potential Jump in Geosynchronous Plasma . . . . . . . . . . . . . . . . . . . J. Huang, L. Jiang, S. Wang, and G. Liu
Internal Charge Estimates for Satellites in Low Earth Orbit and Space Environment Attribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. J. Redmon, J. V. Rodriguez, C. Gliniak, and W. F. Denig
A Sensor to Avoid Arcing Due to Grappling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Goembel
Use of a Langmuir Probe Instrument on Board a Pico-Satellite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . S. Ranvier, M. Anciaux, P. Cardoen, E. Gamby, I. S. Bonnewijn, J. De Keyser, D. Pieroux, and J. P. Lebreton
Spacecraft Surface-Charging Risk Index in Auroral Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Meng, D. Chen, L. Shi, S. Liu, and S. Chen

Electric Propulsion
Multiscale Simulation of Electric Propulsion Effects on Active Spacecraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Brunet, P. Sarrailh, J.-C. Mateo-Velez, J.-M. Siguier, F. Rogier, J.-F. Roussel, and D. Payan

Ground Testing
Temporal and Spatial Correlations in Electron-Induced Arcs of Adjacent Dielectric Islands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Christensen, J. R. Dennison, and J. Dekany
Perspectives on the Distributions of ESD Breakdowns for Spacecraft Charging Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Andersen, J. R. Dennison, and K. Moser
Dependence of Electrostatic Field Strength on Voltage Ramp Rate for Spacecraft Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Moser, A. Andersen, and J. R. Dennison

Planetary Environments and Dusty Plasma
The Europa Charging Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. B. Garrett, W. Kim, I. Jun, and R. W. Evans
Potential of Earth Orbiting Spacecraft Influenced by Meteoroid Hypervelocity Impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . J. Vaverka, A. Pellinen-Wannberg, J. Kero, I. Mann, A. De Spiegeleer, M. Hamrin, C. Norberg, and T. Pitkänen


PART II OF THREE PARTS

SPECIAL ISSUE - VACUUM DISCHARGE PLASMAS (ISDEIV-PS)-2016


GUEST EDITORIAL
Special Issue on Vacuum Discharge Plasmas (ISDEIV-PS)-2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Shi and E. D. Taylor


SPECIAL ISSUE PAPERS
Cathode Spot Behavior and Material Interactions
Detailed Numerical Simulation of Cathode Spots in Vacuum Arcs—I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. D. Cunha, H. T. C. Kaufmann, M. S. Benilov, W. Hartmann, and N. Wenzel
Generation of Boron-Rich Plasma by a Pulsed Vacuum Arc With Lanthanum Hexaboride Cathode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. V. P. Frolova, V. I. Gushenets, A. G. Nikolaev, E. M. Oks, K. P. Savkin, and G. Y. Yushkov
Millisecond Pulsed Arc Discharge in a Forevacuum-Pressure Plasma-Cathode Electron Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. V. Medovnik, V. A. Burdovitsin, A. V. Kazakov, and E. M. Oks
Field Emission From Metal Surfaces Irradiated With Helium Plasmas . . . . . . . . . . . . . . . . . . D. Hwangbo, S. Kajita, N. Ohno, and D. Sinelnikov
Semiempirical Model of the Microcrater Formation in the Cathode Spot of a Vacuum Arc . . . . . . . . . . . . . . . . . G. A. Mesyats and I. V. Uimanov
Pulsed Nanosecond Breakdown of a Hollow Cathode Discharge With Pseudospark Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Zhang, X. Liu, B. Wang, A. Li, and Q. Zhang

Anode and Anode Spot Behavior
Anode Surface Temperature Determination in High-Current Vacuum Arcs by Different Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . R. Methling, S. Franke, S. Gortschakow, M. Abplanalp, R.-P. Sütterlin, T. Delachaux, and K. O. Menzel
Determination of Cr Density After Current Zero in a High-Current Vacuum Arc Considering Anode Plume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Khakpour, S. Popov, S. Franke, R. Kozakov, R. Methling, D. Uhrlandt, and S. Gortschakow
Anode Temperature Evolution in a Vacuum Arc With a Blackbody Electrode Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. I. Beilis, Y. Koulik, and R. L. Boxman
Measurements of Thermal Radiation Brightness of Anode Surface After Current Zero for a Range of Current Levels . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. N. Poluyanova, K. K. Zabello, A. A. Logatchev, V. V. Yakovlev, and S. M. Shkol’nik
Optical and Electrical Investigation of Transition From Anode Spot Type 1 to Anode Spot Type 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . A. Khakpour, S. Franke, R. Methling, D. Uhrlandt, S. Gortschakow, S. Popov, A. Batrakov, and K.-D. Weltmann
Anode Spot Threshold Current of Four Pure Metals Subjected to Uniform Axial Magnetic Field in High Current Vacuum Arcs . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Zhang, H. Ma, Y. Zhang, X. Yi, Z. Liu, Y. Geng, and J. Wang

Vacuum Interrupters and Arcs in Magnetic Fields
Influence of Current Interruption Operations on Internal Pressure in Vacuum Interrupters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Weuffel, D. Gentsch, and P. G. Nikolic
Dependence of the Chopping Current Level of a Vacuum Interrupter on Parallel Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E. Dullni, E. Lindell, and L. Liljestrand
Surface Temperature Analysis of Transversal Magnetic Field Contacts Using a Thermography Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Pieniak, M. Kurrat, and D. Gentsch
High-Current Vacuum Arc Mode Transition of a Horseshoe-Type Axial Magnetic Field Contact With Long Contact Gap . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Li, Z. Wang, Y. Geng, J. Wang, and Z. Liu
Vacuum Arc Commutation Characteristics of the DC Microgrid Hybrid Circuit Breakers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Liao, J. Huang, G. Ge, X. Duan, Z. Huang, and J. Zou

PART III OF THREE PARTS


REGULAR PAPERS
Basic Processes in Fully and Partially Ionized Plasmas
Kinetic Simulation Study of Electron Holes Dynamics During Collisions of Ion-Acoustic Solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S.-M. Hosseini-Jenab and F. Spanier
Characteristics of Trichel Pulse Parameters in Negative Corona Discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Lu, H. Sun, and Q. Wu
Nonlinear Electrostatic Waves in PIE and PI Plasmas With Field-Aligned Shear Flow . . . . . . . . . . . . . . . H. Saleem, S. A. Shan, and Q. Haque

Microwave Generation and Microwave-Plasma Interaction
Transition Between Beam-Plasma and Beam-Dissipative Instability Regimes in the Interaction of Relativistic Large Larmor Orbit Electron
     Beams and Azimuthal Surface Waves Above the Upper-Hybrid Frequency in Coaxial Plasma Waveguides
. . . . I. O. Girka and M. Thumm
An Iterative WLP-FDTD Method for Wave Propagation in Magnetized Plasma . . . . . . . . . Y. Fang, X.-L. Xi, J.-F. Liu Y.-R. Pu, and J.-S. Zhang
Numerical Research on a 170-GHz Time-Dependent Multimode Coaxial Gyrotron With Outer Corrugation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Hou, C. Hou, Q. Chen, S. Yu, and H. Li
A Multiscale Model of Reentry Plasma Sheath and Its Nonstationary Effects on Electromagnetic Wave Propagation . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Yao, X. Li, L. Shi, Y. Liu, and C. Zhu
Experimental Study of Microwave-Induced Discharge and Mechanism Analysis Based on Spectrum Acquisition . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. Wang, L. Fu, J. Sun, S. Grimes, Y. Mao, X. Zhao, and Z. Song
Method to Achieving High-Power Microwaves in Air and Argon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. M. Kekez
Vacuum Electronic Two-Beam Oscillator–Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Kumar M. M and S. Aditya

Charged Particle Beams and Sources
Radial Wire-Array Rod-Pinch Diodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. A. Sorokin
A Simulation Study of the Factors Affecting the Collisional Power Dissipation in a Helicon Plasma . . . . . . . . . . M. Afsharmanesh and M. Habibi
Lifetime of Metallic Explosive Emission Cathodes and Microscopic Explanations . . . . . . . . . . . . . . . . . . . . . . . . . . . P. Wu, J. Sun, and C. Chen

High Energy Density Plasmas and Their Interactions
Effect of the Variation of Pressure on the Dynamics and Neutron Yield of Plasma Focus Machines . . . . . . . . A. Singh, L. Sing, and S. H. Saw
Measurement of Model Parameters Versus Gas Pressure in High-Performance Plasma Focus NX1 and NX2 Operated in Neon . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. Gautam, R. Khanal, S. H. Saw, and S. Lee
3-D NUMIT: A General 3-D Internal Charging Code . . . . . . . . . . . . . . . . . . . . . . . . . . W. Kim, J. Z. Chinn, I. Katz, H. B. Garrett, and K. F. Wong
Electron Beam Properties Emitted From Deuterium Plasma Focus: Scaling Laws . . . . . . . . . . . . . . . . . . . . . . . . M. Akel, S. H. Saw, and S. Lee

Industrial, Commercial, and Medical Applications of Plasmas
Measurement of Aerial Ozone Concentration for the Prototype Atmospheric Plasma Jets . . . . . . . . . . . . . . . . . . . Y. Kim, S.-H. Yi, and G. Cho
Global Energy Transfer Model of a Microwave Electrothermal Thruster Operating With Helium Propellant at 2.45-GHz Frequency . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. S. Yildiz and M. Celik

Pulsed Power Science and Technology
Study of Pulsed Atmospheric Discharge Using Solid-State LTD . . . . . . . . . . . . . . . . . . . . . . . M. R. Kazemi, T. Sugai, A. Tokuchi, and W. Jiang
A High-Voltage Solid-State Switch Based on Series Connection of IGBTs for PEF Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Chen, L. Yu, T. Jiang, H. Tian, K. Huang, and J. Wang
A 25-F Electric Double-Layer Capacitor Bank and DC Power Supply for Portable High-Current Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J.-E. Baek, J.-H. Rhee, Y.-M. Cho, and K.-C. Ko
DSRD-Based High-Power Repetitive Short-Pulse Generator Containing GDT: Theory and Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Samizadeh Nikoo, S. M.-A. Hashemi, and M. Olad Dilmaghanian
Experimental Investigation on the Breakdown Voltage Jitter of Corona-Stabilized Switch at Low Repetition Rate . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. Gao, B. Zeng, J. Cheng, J. Su, R. Li, and L. Zhao
Compact Nanosecond Magnetic Pulse Compression Generator for High-Pressure Diffuse Plasma Generation . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. D. G. Evans, V. J. P. Baillard, P. D. G. Maqueo, J. M. Bergthorson, and S. Coulombe

Arcs & MHD
Anode Modes in Vacuum Arcs: Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. C. Miller

Fusion Science and Technology
Indigenous Manufacturing Realization of TWIN Source and Its Auxiliary . . . . . . . . . . . . . . R. Pandey, M. Bandyopadhyay, R. Yadav, D. Parmar,
      H. Tyagi, H. Shishangiya, S. Shah, D. S. Kumar, A. Gahlaut, M. Vuppugalla, J. Soni, J. Bhagora, G. Bansal, K. Pandya, and A. Chakraborty

Special Issue on Electromagnetic Launchers
Study of Single-Stage Double-Armature Multipole Field Electromagnetic Launcher . . . . . . . . . . . . . Z. Yan, X. Long, F. Lu, Y. Wang, and H. Liu
Comparison of Inductance Gradient and Electromagnetic Force in Two Types of Railguns With Two Projectiles by Finite-Element Method . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Keshtkar, Z. J. Khorrami, and L. Gharib

Special Issue on Plenary, Invited, and Tutorial Papers from ICOPS 2016
The Differential Absorption Hard X-Ray Spectrometer at the Z Facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . K. S. Bell, C. A. Coverdale, D. J. Ampleford, J. E. Bailey, G. Loisel, V. Harper-Slaboszewicz, J. Schwarz, and K. Moy


ANNOUNCEMENTS
Call for Papers—Special Issue on High Power Microwave Generation 2018
Call for Papers—Special Issue on Pulsed Power Science and Technology
Call for Papers—Special Issue on Micropropulsion and CubeSats


Accessibility | Privacy and Opting Out of Cookies | Nondiscrimination Policy

Copyright 2017 IEEE - All rights reserved. Use of this newsletter site signifies your agreement to the IEEE Terms and Conditions.
A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. [Response: Read Receipt]

If you would like to be removed from this email distribution, please [Response: Unsubscribe from List].
If you have unsubscribed in error, please [Response: Subscribe to List].
To unsubscribe from all mailings, use your IEEE Account to update your "Personal Profile and Communication Preferences."

Replies to this message will not reach IEEE. Due to local email service/provider settings, random characters may appear in some instances.

Although the IEEE is pleased to offer the privilege of membership to individuals and groups in the OFAC embargoed countries, the IEEE cannot offer certain services to members from such countries.

IEEE
445 Hoes Lane
Piscataway, NJ 08854 USA
+1 800 678 4333 (toll free, US & Canada)
+1 732 981 0060 (Worldwide)

For more information or questions regarding your IEEE Membership or IEEE Account, please direct your inquiries to the IEEE Contact Center.