T-PS Header
T-NS Home  |   Editorial Board  |   T-NS in IEEE Xplore  |    Early Access  |   Manuscript Submission
FEATURED STORIES - JUNE 2017

"The New Global Muon Trigger of the CMS Experiment"

by Jonathan Fulcher, Joschka Lingemann, Dinyar Rabady, Thomas Reis, and Hannes Sakulin


For the 2016 physics data runs, the L1 trigger system of the compact muon solenoid (CMS) experiment underwent a major upgrade to cope with the increasing instantaneous luminosity of the CERN LHC whilst maintaining a high event selection efficiency for the CMS physics program. Most subsystem specific trigger processor boards were replaced with powerful general purpose processor boards, conforming to the MicroTCA standard, whose tasks are performed by firmware on an field-programmable gate array of the Xilinx Virtex 7 family. Furthermore, the muon trigger system moved from a subsystem centered approach, where each of the three muon detector systems provides muon candidates to the global muon trigger (GMT), to a region-based system, where muon track finders (TFs) combine information from the subsystems to generate muon candidates in three detector regions that are then sent to the upgraded GMT. The upgraded GMT receives up to 108 muons from the processors of the muon TFs in the barrel, overlap, and endcap detector regions. The muons are sorted in two steps and duplicates are identified for removal. The first step treats muons from different processors of a TF in one detector region. Muons from TFs in different detector regions are compared in the second step. An isolation variable is calculated, using energy sums from the calorimeter trigger and added to each of the best eight muons before they are sent to the upgraded global trigger (GT) where the final trigger decision is made. The upgraded GMT algorithm is implemented on a general purpose processor board that uses optical links at 10 Gb/s to receive the input data from the muon TFs and the calorimeter energy sums, and to send the selected muon candidates to the upgraded GT. more...
 
-----------------------

"Multichannel FPGA-Based Data-Acquisition-System for Time-Resolved Synchrotron Radiation Experiments"

by Hyeokmin Choe, Semen Gorfman, Stefan Heidbrink, Ullrich Pietsch, Marco Vogt, Jens Winter, and Michael Ziolkowski


The aim of this contribution is to describe our recent development of a novel compact field-programmable gate-array (FPGA)-based data acquisition (DAQ) system for use with multichannel X-ray detectors at synchrotron radiation facilities. The system is designed for time resolved counting of single photons arriving from several-currently 12-independent detector channels simultaneously. Detector signals of at least 2.8 ns duration are latched by asynchronous logic and then synchronized with the system clock of 100 MHz. The incoming signals are subsequently sorted out into 10 000 time-bins where they are counted. This occurs according to the arrival time of photons with respect to the trigger signal. Repeatable mode of triggered operation is used to achieve high statistic of accumulated counts. The time-bin width is adjustable from 10 ns to 1 ms. In addition, a special mode of operation with 2 ns time resolution is provided for two detector channels. The system is implemented in a pocket-size FPGA-based hardware of 10 cm ×10 cm ×3 cm and thus can easily be transported between synchrotron radiation facilities. For setup of operation and data read-out, the hardware is connected via USB interface to a portable control computer. DAQ applications are provided in both LabVIEW and MATLAB environments. more...
 
-----------------------

"A Bulk Control Circuit for Open-Loop Front-Ends for X-Ray Pixel Detectors"

by A. Grande, C. Fiorini, P. Fischer, and M. Porro


In this paper, we present a bulk control circuit to correct the chip-to-chip process variations of an open-loop nonlinear front-end (FE) for X-ray pixel detectors. Our study was carried out in the framework of the Depfet sensor with signal compression detector development for the European X-ray free electron laser. The presented circuit is capable to stabilize the FE response in presence of threshold voltage variations, acting on the bulk voltages of the FE's transistors and exploiting the body effect. The control circuit does not affect the noise performances of the FE. The working principle of the proposed control circuit and the first experimental results obtained with a first prototype realized in the 130-nm IBM technology are presented in this work. more...
 
-----------------------

A PUBLICATION OF THE IEEE NUCLEAR AND PLASMA SCIENCES SOCIETY

JUNE 2017   |  VOLUME 65  |  NUMBER 6  |  IETNAE  |  (SSN 0018-9499)
20th REAL TIME CONFERENCE (RT2016), Padua, Italy, June 6–10, 2016
EDITORIAL
Message From the Editor for Contributions to the 2016 Real Time Conference Issue of TNS . . . . . . . . . . . . . . . . . . . . . . . . . . . S. M. Schmeling
Real Time Conference 2016 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Luchetta

CONTROLS, SAFETY, AND SECURITY
The Laser Control System for a Calibration Facility of a Light-Based Detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Mastroianni, R. Di Stefano, O. Escalante, M. Iacovacci, and F. Marignetti
uSOP: A Microprocessor-Based Service-Oriented Platform for Control and Monitoring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A. Aloisio, F. Ameli, A. Anastasio, P. Branchini, F. Di Capua, R. Giordano, V. Izzo, and G. Tortone
A Monitoring System for the LHCb Data Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Barbosa, C. Gaspar, B. Jost, M. Frank, and L. G. Cardoso
Generic FPGA-Based Platform for Distributed IO in Proton Therapy Patient Safety Interlock System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . M. Eichin, P. F. Carmona, E. Johansen, M. Grossmann, A. Mayor, D. Erhardt, A. Gomperts, H. Regele, C. Bula, and C. Sidler
A Model-Based Fast Protection System for High-Power RF Tube Amplifiers Used at the European XFEL Accelerator . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ł. Butkowski, V. Vogel, H. Schlarb, and J. Szabatin
Integrated Response Time Evaluation Methodology for the Nuclear Safety Instrumentation System . . . . . . . . . . . . . . . . . C. J. Lee and J. H. Yun

ONLINE COMPUTING, DAQ, AND TRIGGER
Intelligent FPGA Data Acquisition Framework . . . . . . . . . . . . . . . . . Y. Bai, D. Gaisbauer, S. Huber, I. Konorov, D. Levit, D. Steffen, and S. Paul
A JESD204B-Compliant Architecture for Remote and Deterministic-Latency Operation . . . . . . . R. Giordano, V. Izzo, S. Perrella, and A. Aloisio
A Front-End Electronics Prototype Based on Gigabit Ethernet for the ATLAS Small-Strip Thin Gap Chamber . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Hu, H. Lu, X. Wang, F. Li, X. Wang, T. Geng, H. Yang, S. Liu, L. Han, and G. Jin
A Lossless Network for Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Jereczek, G. Lehmann Miotto, D. Malone, and M. Walukiewicz
The Associative Memory System Infrastructures for the ATLAS Fast Tracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C.-L. Sotiropoulou,
      I. Maznas,  S. Citraro,  A. Annovi,  L. S. Ancu,  R. Beccherle,  F. Bertolucci,  N. Biesuz,  D. Calabrò,  F. Crescioli,   D. Dimas,   M. Dell’Orso,
     S. Donati, C. Gentsos, P. Giannetti, S. Gkaitatzis,J. Gramling, V. Greco, P. Kalaitzidis, K. Kordas, N. Kimura, T. Kubota, A. Iovene, A. Lanza,
     P. Luciano,   B. Magnin,   K. Mermikli,   H. Nasimi,  A. Negri,  S. Nikolaidis,  M. Piendibene,  A. Sakellariou,  D. Sampsonidis,  and  G. Volpi

A Coprocessor for the Fast Tracker Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Gentsos, G. Volpi, S. Gkaitatzis, P. Giannetti, S. Citraro, F. Crescioli, K. Kordas, and S. Nikolaidis
Online Calibration of the TPC Drift Time in the ALICE High Level Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . D. Rohr, M. Krzewicki, C. Zampolli, J. Wiechula, S. Gorbunov, A. Chauvin, I. Vorobyev, S. Weber, K. Schweda, and V. Lindenstruth
Optimization of an FPGA Trigger Based on an Artificial Neural Network for the Detection of Neutrino-Induced Air Showers . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Szadkowski, D. Głas, K. Pytel, and M. Wiedeński
DCT Trigger in a High-Resolution Test Platform for the Detection of Very Inclined Showers in Pierre Auger Surface Detectors. . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Szadkowski and M. Wiedeński
Adaptive IIR-Notch Filter for RFI Suppression in a Radio Detection of Cosmic Rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Szadkowski
The Least Mean Squares Adaptive FIR Filter for Narrow-Band RFI Suppression in Radio Detection of Cosmic Rays . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Szadkowski and D. Głas
A High Frame Rate Test System for the HEPS-BPIX Based on NI-sbRIO Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . J. Gu, J. Zhang, W. Wei, Z. Ning, Z. Li, X. Jiang, L. Fan, W. Shen, J. Ren, X. Ji, A. K. Lan, Y. Lu, Q. Ouyang, P. Liu, K. Zhu, and Z. Wang
Multichannel FPGA-Based Data-Acquisition-System for Time-Resolved Synchrotron Radiation Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Choe, S. Gorfman, S. Heidbrink, U. Pietsch, M. Vogt, J. Winter, and M. Ziolkowski
Evaluation Software for BaF2 Detector Array Electronics at CSNS–WNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Zhang, P. Cao, Q. Wang, D. Zhang, B. He, X. Qi, and Q. An
FPGA Online Tracking Algorithm for the PANDA Straw Tube Tracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Liang, H. Ye, M. J. Galuska, T. Gessler, W. Kühn, J. S. Lange, M. N. Wagner, Z. Liu, and J. Zhao
The Data Acquisition System of the KOTO Experiment and the RCE Platform Technology Upgrade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Su, J. Ameel, J. Beechert, M. Campbell, C. Gee, M. Huff,
     J. Micallef, J. Robinson, C. Rymph, H. Schamis, M. Taylor, M. Tecchio, N. Whallon, J. Xu, Y. Sugiyama, Y. Tajima, M. Bogdan,  and  Y. Wah

FRONT-END TECHNOLOGIES
2-D Encoded Multiplexing Readout for THGEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Yuan, S. Liu, B. Qi, C. Feng, and S. Ma
Alpha–Gamma Discrimination in BaF2 Using FPGA-Based Feedforward Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Yang, C. Feng, W. Dong, D. Jiang, Z. Shen, S. Liu, and Q. An
Design and Test of a GBTX-Based Board for the Upgrade of the ALICE TOF Readout Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .D. Falchieri, P. Antonioli, C. Baldanza, F. M. Giorgi, A. Mati, and C. Tintori
Portable Calibration Node for LHAASO-KM2A Detector Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Li, G. Gong, and J. Li
Prototype of the Readout Electronics for WCDA in LHAASO . . . . . . . . . . . L. Zhao, C. Ma, S. Chu, X. Gao, Z. Jiang, R. Dong, S. Liu, and Q. An
A Hardware Implementation of a Brain Inspired Filter for Image Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. Luciano, C.-L. Sotiropoulou, S. Gkaitatzis, M. Viti, S. Citraro, A. Retico, P. Giannetti, and M. Dell’Orso
FPGA-Based RF and Piezocontrollers for SRF Cavities in CW Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     R. Rybaniec, K. Przygoda, W. Cichalewski, V. Ayvazyan, J. Branlard, Ł. Butkowski, S. Pfeiffer, C. Schmidt, H. Schlarb,  and  J. Sekutowicz
MicroTCA.4-Based RF and Laser Cavities Regulation Including Piezocontrols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Przygoda, R. Rybaniec, Ł. Butkowski, C. Gerth, P. Peier, C. Schmidt, B. Steffen, and H. Schlarb
Bunch-by-Bunch Beam Transverse Feedback Electronics Designed for SSRF . . . . . . . . . . . . . . . . . . J. Liu, L. Zhao, L. Zhan, S. Liu, and Q. An
Low-Cost FPGA TDC With High Resolution and Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Zheng, P. Cao, D. Jiang, and Q. An
A Low Noise Front End for the Belle II Forward Electromagnetic Calorimeter Upgrade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. Branchini, A. Budano, M. Galasso, D. Tagnani, A. Aloisio, and G. Corradi
Common Readout Subsystem for the Belle II Experiment and Its Performance Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Yamada, R. Itoh, T. Konno, Z. Liu, M. Nakao, S. Y. Suzuki, and J. Zhao

FUSION EXPERIMENTS
Control System Optimization Techniques for Real-Time Applications in Fusion Plasmas: The RFX-mod Experience . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Pigatto, M. Baruzzo, P. Bettini, T. Bolzonella, G. Manduchi, G. Marchiori, and F. Villone
Development of Data Acquisition and Control System for Long Pulse Operations of Indian Test Facility of ITER DNB . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . H. Tyagi, R. Yadav, K. Patel, M. Bandyopadhyay, C. Rotti, D. Sudhir, A. Gahlaut, K. Pandya, A. Chakraborty, and T. Trivedi
Real-Time Vertical Plasma Position Control Using the Heavy Ion Beam Diagnostic . . . . . . . . . . . . . . . . . . . . . . R. B. Henriques, B. B. Carvalho,
      A. S. Duarte, I. S. Carvalho, A. J. N. Batista, R. Coelho, C. Silva, A. Malaquias, H. Figueiredo, H. Alves, H. Fernandes, and I. S. Nedzelskiy

Multiple Fast Controller Synchronization for ITER Control System Model . . . . . . . . . . . . . . . M. Prokopas, B. Bauvir, A. Wallander, and J. Sousa
Integration of a Real-Time Node for Magnetic Perturbations Signal Analysis in the Distributed Digital Control System of the TCV Tokamak . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Galperti, S. Coda, B. P. Duval, X. Llobet, P. Milne, O. Sauter, J. M. Moret, and D. Testa

EMERGING TECHNOLOGIES AND UPGRADES
Assessment of General Purpose GPU Systems in Real-Time Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. J. Maceina and G. Manduchi
Qualification of the ALICE SAMPA ASIC With a High-Speed Continuous DAQ System . . . . . . . . . . . . . . . . . . . . . . . . G. Tambave and A. Velure
The New Global Muon Trigger of the CMS Experiment . . . . . . . . . . . . . . . . . . . . . . J. Fulcher, J. Lingemann, D. Rabady, T. Reis, and H. Sakulin
Design of a Compact Hough Transform for a New L1 Trigger Primitives Generator for the Upgrade of the CMS Drift Tubes Muon Detector
     at the HL-LHC
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. Pozzobon, F. Montecassiano, and P. Zotto
An Evaluation of 100-Gb/s LAN Networks for the LHCb DAQ Upgrade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Valat, B. Vőneki, N. Neufeld, J. Machen, R. Schwemmer, and D. H. Cámpora Pérez
Large-Scale DAQ Tests for the LHCb Upgrade . . . . . . . . M. Manzali, A. Falabella, F. Giacomini, U. Marconi, N. Neufeld, S. Valat, and B. Voneki
Operational Experience With the Readout System of the MINOS Vertex Tracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. Baron, D. Calvet, F. Château, A. Corsi, E. Delagnes, A. Delbart, A. Obertelli, and N. Paul


Conference Author Index



 

PART II OF TWO PARTS


REGULAR PAPERS

NUCLEAR MEDICAL IMAGING

Low Dose CT Filtering in the Image Domain Using MAP Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. J. Geraldo, L. M. V. Cura, P. E. Cruvinel, and N. D. A. Mascarenhas

NUCLEAR POWER INSTRUMENTATION
Particle Filter-Based Recursive Data Fusion With Sensor Indexing for Large Core Neutron Flux Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. K. Tamboli, S. P. Duttagupta, and K. Roy
Nuclear Power Plant Thermocouple Sensor-Fault Detection and Classification Using Deep Learning and Generalized Likelihood
     Ratio Test
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Mandal, B. Santhi, S. Sridhar, K. Vinolia, and P. Swaminathan

RADIATION EFFECTS
Total Ionizing Dose Effects of Gamma-Ray Radiation on NbOx-Based Selector Devices for Crossbar Array Memory . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Gao, K. E. Holbert, and S. Yu
Broadband Radiation-Resistant Erbium-Doped Optical Fibers for Space Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. Dardaillon, J. Thomas, M. Myara, S. Blin, A. Pastouret, C. Gonnet, and P. Signoret
Dependence of Ideality Factor in Lateral PNP Transistors on Surface Carrier Concentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Li, J. Yang, H. J. Barnaby, K. F. Galloway, R. D. Schrimpf, D. M. Fleetwood, and C. Liu
A Quatro-Based 65-nm Flip-Flop Circuit for Soft-Error Resilience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . Y.-Q. Li, H.-B. Wang, R. Liu, L. Chen, I. Nofal, S.-T. Shi, A.-L. He, G. Guo, S. H. Baeg, S.-J. Wen, R. Wong, M. Chen, and Q. Wu

RADIATION INSTRUMENTATION
Using Backscattering to Enhance Efficiency in Neutron Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Kittelmann, K. Kanaki, E. Klinkby, X. X. Cai, C. P. Cooper-Jensen, and R. Hall-Wilton
β-Ga2O3 Solid-State Devices for Fast Neutron Detection . . . . . . . . . . . . . . . D. Szalkai, Z. Galazka, K. Irmscher, P. Tütt˝o, A. Klix, and D. Gehre
Nonproportional Response of Scintillators to Alpha Particle Excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. Wolszczak and P. Dorenbos
Study of 222Rn Absorption and Detection Properties of EJ-212 and BC-400 Plastic Scintillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Mitev, C. Dutsov, S. Georgiev, L. Tsankov, and T. Boshkova
A Compact Low-Power Driver Array for VCSELs in 65-nm CMOS Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Zeng, K. Sun, G. Wang, T. Zhang, S. Kulis, P. Gui, and P. Moreira
A Bulk Control Circuit for Open-Loop Front-Ends for X-Ray Pixel Detectors . . . . . . . . . . . . . . . . . . A. Grande, C. Fiorini, P. Fischer, and M. Porro
New Position Algorithms for the 3-D CZT Drift Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Budtz-Jørgensen and I. Kuvvetli
Modeling and Characterization of SiPM Parameters at Temperatures Between 95 K and 300 K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Biroth, P. Achenbach, W. Lauth, and A. Thomas

Accessibility | Privacy and Opting Out of Cookies | Nondiscrimination Policy

Copyright 2017 IEEE - All rights reserved. Use of this newsletter site signifies your agreement to the IEEE Terms and Conditions.
A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. [Response: Read Receipt]

If you would like to be removed from this email distribution, please [Response: Unsubscribe from List].
If you have unsubscribed in error, please [Response: Subscribe to List].
To unsubscribe from all mailings, use your IEEE Account to update your "Personal Profile and Communication Preferences."

Replies to this message will not reach IEEE. Due to local email service/provider settings, random characters may appear in some instances.

Although the IEEE is pleased to offer the privilege of membership to individuals and groups in the OFAC embargoed countries, the IEEE cannot offer certain services to members from such countries.

IEEE
445 Hoes Lane
Piscataway, NJ 08854 USA
+1 800 678 4333 (toll free, US & Canada)
+1 732 981 0060 (Worldwide)

For more information or questions regarding your IEEE Membership or IEEE Account, please direct your inquiries to the IEEE Contact Center.