T-PS Header
T-NS Home  |   Editorial Board  |   T-NS in IEEE Xplore  |    Early Access  |   Manuscript Submission
FEATURED STORIES - JULY 2017

"Microchannel Plate Imaging Detectors for High Dynamic Range Applications"

by C. D. Ertley, O. H. W. Siegmund, J. Hull, A. Tremsin, A. O'Mahony, C. A. Craven, and M. J. Minot


Microchannel plate (MCP) imaging detectors are widely used in astronomical, biological imaging and remote sensing applications. Photon counting mode imagers with event timing can make use of the high spatial resolution (~10- 50 μm ) and very high time resolution (subnanoseconds) of MCP detectors to enhance the performance of such detectors in dynamic environments (for example airborne surveillance of moving objects, LIDAR, and 3- 50 μm ) and very high time resolution (subnanoseconds) of MCP detectors to enhance the performD topographic imaging). The total information that can be collected is limited by the dynamic range of the detector (cross delay line sensors can support detected photon rates up to ~2 MHz over the entire effective area). The ideal sensor for many applications, such as bright images or fast transient behavior, would combine the desirable attributes of high spatial and time resolution for each detected photon with event rates of 100 MHz or more. A new class of MCPs constructed using atomic layer deposition (ALD) on borosilicate glass microcapillary arrays is providing enhancements towards this goal. The ALD MCP manufacturing process decouples the operational functionalization from the substrate fabrication, opening the door for new resistive layers and high secondary emissive materials. Many improvements over traditional MCPs have been demonstrated, including robust substrates able to withstand high processing temperatures, very low background rates, high stable gains, and low outgassing. more...
 
-----------------------

"Investigation of the Depth Reconstruction and Search for Local Performance Variations With a Large Coplanar-Quad-Grid CdZnTe Detector"

by Robert Temminghoff on behalf of the COBRA collaboration


CdZnTe coplanar-grid (CPG) detector is used in the COBRA experiment to search for neutrinoless double beta decay. In the next phase of the experiment, significantly larger detectors with a volume of (20×20×15) mm3 and a coplanar-quad-grid will be used. This paper presents the results of a spatially resolved investigation of the performance of one detector of this type, focusing on its usability in a double-beta experiment. With these data, two modifications of the interaction depth formula, which is of great importance for background reduction in COBRA, are investigated for the first time with such a detector, and the results are compared with a detector with a conventional CPG. Furthermore, we report the mobility-lifetime product for electrons for each sector of the detector. more...
 
-----------------------

"Radiation Hardness of dSiPM Sensors in a Proton Therapy Radiation Environment"

by Faruk Diblen, Tom Buitenhuis, Torsten Solf, Pedro Rodrigues, Emiel van der Graaf, Marc-Jan van Goethem, Sytze Brandenburg, and Peter Dendooven


In vivo verification of dose delivery in proton therapy by means of positron emission tomography (PET) or prompt gamma imaging is mostly based on fast scintillation detectors. The digital silicon photomultiplier (dSiPM) allows excellent scintillation detector timing properties and is thus being considered for such verification methods. We present here the results of the first investigation of radiation damage to dSiPM sensors in a proton therapy radiation environment. Radiation hardness experiments were performed at the AGOR cyclotron facility at the KVI-Center for Advanced Radiation Technology, University of Groningen. A 150-MeV proton beam was fully stopped in a water target. In the first experiment, bare dSiPM sensors were placed at 25 cm from the Bragg peak, perpendicular to the beam direction, a geometry typical for an in situ implementation of a PET or prompt gamma imaging device. In the second experiment, dSiPM-based PET detectors containing lutetium yttrium orthosilicate scintillator crystal arrays were placed at 2 and 4 m from the Bragg peak, perpendicular to the beam direction; resembling an in-room PET implementation. Furthermore, the experimental setup was simulated with a Geant4-based Monte Carlo code in order to determine the angular and energy distributions of the neutrons and to determine the 1-MeV equivalent neutron fluences delivered to the dSiPM sensors. more...
 
-----------------------

A PUBLICATION OF THE IEEE NUCLEAR AND PLASMA SCIENCES SOCIETY

JULY 2017   |  VOLUME 64  |  NUMBER 7  |  IETNAE  |  (SSN 0018-9499)

PART I OF TWO PARTS

SYMPOSIUM ON RADIATION MEASUREMENTS AND APPLICATIONS (SORMA WEST 2016) Berkeley, CA, USA, May 22–26, 2016
EDITORIAL
Conference Comments by the Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Fabris, J. D. Valentine,
     P. Barton,  S. Derenzo,  D. E. Archer,  Z. W. Bell,  E. Brubaker,  A. M. Conway, G.-F. Dalla Betta, G. De Geronimo, C. Fiorini, C. Guazzoni,
     J. P. Hayward,  W. J. Kernan,  S. E. Labov,  S. Payne,  V. Re, A. Rozenfeld, R. Runkle, B. Sturm, L. Yang, M. Zhuravleva,  and K.-P. Ziock


MIXI: Mobile Intelligent X-Ray Inspection System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Arodzero, S. Boucher, S. V. Kutsaev, and V. Ziskin
Nondestructive Inspection System for Special Nuclear Material Using Inertial Electrostatic Confinement Fusion Neutrons and
     Laser Compton Scattering Gamma-Rays
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . H. Ohgaki, I. Daito, H. Zen, T. Kii, K. Masuda, T. Misawa, R. Hajima, T. Hayakawa, T. Shizuma, M. Kando, and S. Fujimoto
Shadow-Shielding Compensation for Moving Sources Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. Coulon and J. Dumazert
Development of Eu:SrI2 Scintillator Array for Gamma-Ray Imaging Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Yoshino, K. Kamada, Y. Shoji, S. Kurosawa, Y. Yokota, Y. Ohashi, A. Yoshikawa, and S. Yamamoto
Geant4 Analysis of a Thermal Neutron Real-Time Imaging System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Datta and A. I. Hawari
Machine Learning Method Applied in Readout System of Superheated Droplet Detector . . . . . . . . . . . . . . Y. Liu, C. J. Sullivan, and F. d’Errico
Fresh Fuel Measurements With the Differential Die-Away Self-Interrogation Instrument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. C. Trahan, A. P. Belian, M. T. Swinhoe, H. O. Menlove, M. Flaska, and S. A. Pozzi
Uncertainty Analysis of Wavelet-Based Feature Extraction for Isotope Identification on NaI Gamma-Ray Spectra . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Stinnett, C. J. Sullivan, and H. Xiong
FemtoDAQ: A Low-Cost Digitizer for SiPM-Based Detector Studies and Its Application to the HAWC Detector Upgrade . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. Skulski, A. Ruben, and S. BenZvi
Working Gas Selection of the Honeycomb Converter-Based Neutron Detector . . . . . . . . . . . . . . . . . . . . . Z. Fang, Y. Yang, Y. Li, and X. Wang
Multiagency Urban Search Experiment Detector and Algorithm Test Bed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  A. D. Nicholson, I. Garishvili, D. E. Peplow, D. E. Archer, W. R. Ray, M. W. Swinney, M. J. Willis,
      G. G. Davidson, S. L. Cleveland, B. W. Patton, D. E. Hornback, J. J. Peltz, M. S. L. McLean, A. A. Plionis, B. J. Quiter, and M. S. Bandstra

Large-Area, Low-Cost, High-Efficiency Neutron Detector for Vehicle-Mounted Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . J. L. Lacy, C. S. Martin, A. Athanasiades, M. Regmi, G. J. Vazquez-Flores, S. Davenport, N. S. King, and T. Lyons
Improved Scintillation Detector Performance via a Method of Enhanced Layered Coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. T. Wakeford, S. R. Tornga, J. C. Adams, O. C. Trautschold, and M. P. Hehlen
Poly- Versus Mono-Energetic Dual-Spectrum Non-Intrusive Inspection of Cargo Containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. E. Martz, Jr., S. M. Glenn, J. A. Smith, C. J. Divin, and S. G. Azevedo
Identification of High-Z Materials With Photoneutrons Driven by a Low-Energy Electron Linear Accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Yang, Z. Zhang, H. Chen, Y. Li, and Y. Li
Source Correlated Prompt Neutron Activation Analysis for Material Identification and Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  B. Canion, S. McConchie, and S. Landsberger
Investigation of FPGA-Based Real-Time Adaptive Digital Pulse Shaping for High-Count-Rate Applications . . . . . . . S. Saxena and A. I. Hawari
Characteristic of an Organic Photodetector Fabricated With P3HT:ICBA Blending Materials for Indirect X-Ray Detection . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Seon, B. Kim, and J. Kang
Characterization of Large Volume CLYC Scintillators for Nuclear Security Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Soundara-Pandian, J. Tower, C. Hines, P. O’Dougherty, J. Glodo, and K. Shah
Characterization of Fissile Assemblies Using Low-Efficiency Detection Systems . . . . . . . . . . . . . . . . . . . . . . . G. F. Chapline and J. M. Verbeke
Measurement of the Energy-Dependent Angular Response of the ARES Detector System and Application to Aerial Imaging . . . . . . . . . . . . . . .
      . . . . . . . . . T. H. Y. Joshi, B. J. Quiter, J. S. Maltz, M. S. Bandstra, A. Haefner, N. Eikmeier, E. Wagner, T. Luke, R. Malchow, and K. McCall
Point Kinetics Framework for Characterizing Prompt Neutron and Photon Signatures From Tagged Neutron Interrogation . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  B. Canion, S. McConchie, and S. Landsberger
Double-Layered CZT Compton Imager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Y. Kim, T. Lee, and W. Lee
Microchannel Plate Imaging Detectors for High Dynamic Range Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. D. Ertley, O. H. W. Siegmund, J. Hull, A. Tremsin, A. O’Mahony, C. A. Craven, and M. J. Minot
Threshold Rejection Mode Active Interrogation of SNMs Using Continuous Beam DD Neutrons With Centrifugal and Acoustic Tensioned
     Metastable Fluid Detectors
. . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Archambault, A. Hagen, K. Masuda, N. Yamakawa, and R. P. Taleyarkhan
Neutron Slowing Down Time Based Inspection Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Gozani and M. J. King
Pulse Shape Discrimination Algorithms, Figures of Merit, and Gamma-Rejection for Liquid and Solid Scintillators . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. G. J. Langeveld, M. J. King, J. Kwong, and D. T. Wakeford
Development and Characterization of a High-Energy Neutron Time-of-Flight Imaging System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. C. Madden, R. C. Schirato, A. L. Swift, T. E. Cutler, D. R. Mayo, and J. F. Hunter
Emerging New Pseudobinary and Ternary Halides as Scintillators for Radiation Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Kang, Q. Feng, C. Summers, C. M. Fang, R. Adhikari, and K. Biswas
Characterization of Deuterated-Xylene Scintillator as a Neutron Spectrometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Di Fulvio, F. D. Becchetti, R. S. Raymond, R. O. Torres-Isea, S. D. Clarke, and S. A. Pozzi
Development of a Multipurpose Gamma-Ray Imaging Detector Module With Enhanced Expandability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E. Min, Y.-J. Jung, H. Lee, J. Jang, K. M. Kim, S.-K. Joo, and K. Lee
Single-View 3-D Reconstruction of Correlated Gamma-Neutron Sources . . . . . . . . . . . . . . . . . . . . . . M. Monterial, P. Marleau, and S. A. Pozzi
Present Status of the Microstructured Semiconductor Neutron Detector-Based Direct Helium-3 Replacement . . . . . . . . . . . . . . . . . T. R. Ochs,
     S. L. Bellinger,  R. G. Fronk,  L. C. Henson,  D. E. Huddleston,  Z. I. Lyric,  J. K. Shultis,  C. T. Smith,  T. J. Sobering,  and  D. S. McGregor

Distinguishing Moderated Actinide Metal From Oxide Using Neutron Correlations and Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. M. Verbeke, G. F. Chapline, L. F. Nakae, and S. A. Sheets
Automated Isotope Identification Algorithm Using Artificial Neural Networks . . . . . . . . . . . . . . . . . . . M. Kamuda, J. Stinnett, and C. J. Sullivan
Effects of Correlated and Uncorrelated Gamma Rays on Neutron Multiplicity Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . C. C. Cowles, R. S. Behling, G. R. Imel, R. T. Kouzes, A. T. Lintereur, S. M. Robinson, E. R. Siciliano, and S. C. Stave
Design Improvement and Bias Voltage Optimization of Glass-Body Microchannel Plate Picosecond Photodetector . . . . . . . . . . . . . . . J. Wang,
      K. Byrum,  M. Demarteau,  R. Dharmapalan,  J. W. Elam,  A. U. Mane,  E. May,  R. Wagner,   D. Walters,   J. Xie,   L. Xia,    and   H. Zhao


Symposium Author Index



PART II OF TWO PARTS


REGULAR PAPERS

ACCELERATOR TECHNOLOGY

Bunch Current Measurement Using a High-Speed Photodetector at HLS II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Zhou, Y. Yang, B. Sun, P. Lu, F. Wu, J. Wang Z. Zhou, Q. Luo, Q. Wang, and H. Li

RADIATION EFFECTS
Radiation Hardness of dSiPM Sensors in a Proton Therapy Radiation Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . F. Diblen, T. Buitenhuis, T. Solf, P. Rodrigues, E. van der Graaf, M.-J. van Goethem, S. Brandenburg, and P. Dendooven
Total Ionizing Dose Influence on the Single-Event Upset Sensitivity of 130-nm PD SOI SRAMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Q. Zheng, J. Cui, M. Liu, H. Zhou, M. Liu, Y. Wei, D. Su, T. Ma, W. Lu, X. Yu, Q. Guo, and C. He
Evolution of Activation Energy of Interface Traps in LPNP Transistors Characterized by Deep-Level Transient Spectroscopy . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Li, J. Yang, and C. Liu

RADIATION INSTRUMENTATION
Dose Rate Linearity in 4H-SiC Schottky Diode-Based Detectors at Elevated Temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. S. Mohamed, N. G. Wright, and A. B. Horsfall
Fast Neutron Detection Using Pixelated CdZnTe Spectrometers . . . . . . . . . . . M. Streicher, D. Goodman, Y. Zhu, S. Brown, S. Kiff, and Z. He
Discrete Wavelet Transform Method for High Flux n − γ Discrimination With Liquid Scintillators . . . . . . . . . . . . . . . . . . . H. Singh and R. Mehra
Investigation of the Depth Reconstruction and Search for Local Performance Variations With a Large Coplanar-Quad-Grid CdZnTe
     Detector
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. Temminghoff
Sparse Representation for Signal Reconstruction in Calorimeters Operating in High Luminosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. P. Barbosa, L. M. de A. Filho, B. S. Peralva, A. S. Cerqueira, and J. M. de Seixas
Femtosecond Resolution Timing in Multi-GS/s Waveform Digitizing ASICs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. Orel and G. S. Varner
A Point Kinetics Model for Estimating Neutron Multiplication of Bare Uranium Metal in Tagged Neutron Measurements . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. C. Tweardy, S. McConchie, and J. P. Hayward

REAL TIME SYSTEMS
Distributed Continuous Event-Based Data Acquisition Using the IEEE 1588 Synchronization and FlexRIO FPGA . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Taliercio, A. Luchetta, G. Manduchi, and A. Rigoni
A Timing Synchronizer System for Beam Test Setups Requiring Galvanic Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. D. Meder, D. Emschermann, J. Frühauf, W. F. J. Müller, and J. Becker
Fast and Efficient Algorithms for Computational Electromagnetics on GPU Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Maceina, P. Bettini, G. Manduchi, and M. Passarotto
Prototype of Field Waveform Digitizer for BaF2 Detector Array at CSNS-WNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Q. Wang, P. Cao, D. Zhang, X. Qi, T. Yu, D. Jiang, B. He, Y. Zhang, and Q. An
Particle Identification on an FPGA Accelerated Compute Platform for the LHCb Upgrade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Färber, R. Schwemmer, J. Machen, and N. Neufeld

Accessibility | Privacy and Opting Out of Cookies | Nondiscrimination Policy

Copyright 2017 IEEE - All rights reserved. Use of this newsletter site signifies your agreement to the IEEE Terms and Conditions.
A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. [Response: Read Receipt]

If you would like to be removed from this email distribution, please [Response: Unsubscribe from List].
If you have unsubscribed in error, please [Response: Subscribe to List].
To unsubscribe from all mailings, use your IEEE Account to update your "Personal Profile and Communication Preferences."

Replies to this message will not reach IEEE. Due to local email service/provider settings, random characters may appear in some instances.

Although the IEEE is pleased to offer the privilege of membership to individuals and groups in the OFAC embargoed countries, the IEEE cannot offer certain services to members from such countries.

IEEE
445 Hoes Lane
Piscataway, NJ 08854 USA
+1 800 678 4333 (toll free, US & Canada)
+1 732 981 0060 (Worldwide)

For more information or questions regarding your IEEE Membership or IEEE Account, please direct your inquiries to the IEEE Contact Center.