T-NPS Header
T-PS Home  |  Editorial Board  |  T-PS in IEEE Xplore  |   Early Access  |  Manuscript Submission
JUNE 2018 FEATURE ARTICLES - THESE ARE OPEN ACCESS FOR A LIMITED TIME

We are pleased to announce that the 2017 Impact Factor for T-PS has increased by 20% and now stands at 1.253!

Outage Probability Analysis and Dynamic Criterion Calculation Under the Plasma Sheath Channel

by Xuantao Lyu, Chunxiao Jiang, Ning Ge
article one image
Dynamic plasma sheath can lead to the communication interruption because of its severe impact on the electromagnetic waves. Existing studies mainly focused on the numerical analysis, either regarding the specific experimental results or regarding the computational modeling of the plasma sheath channel, without theoretical and quantitative analysis of the communication performance. In this paper, the bit error rate and the outage probability with m -ary frequency shift keying modulation are derived theoretically based on the hidden Markov model of plasma sheath channels. Specifically, since the outage probability can be viewed as the probability of an interruption in the communication system, it can reflect the intensity of the channel dynamics. Therefore, we analyze the effect of channel model parameters on the outage probability and propose a dynamic criterion calculation formula to model the dynamic of the plasma sheath channel. Finally, simulation results are carried out to reveal a positive correlation between the dynamic criterion and the outage probability, which shows that the dynamic criterion calculation formula can accurately illustrate the dynamic of the plasma sheath channel and the communication performance. more...
-----------------------

Neutron Diagnostics in the Large Helical Device

by Mitsutaka Isobe, Kunihiro Ogawa, Takeo Nishitani, Hitoshi Miyake, Takashi Kobuchi, Neng Pu, Hoiroki Kawase, Eiji Takada, Tomoyo Tanaka, Siyuan Li, Sachiko Yoshihashi, Akira Uritani, Jungmin Jo, Sadayoshi Murakami, Masaki Osakabe, and LHD Experiment Group
article two image
The deuterium operation of the large helical device (LHD) began in March 7, 2017, after long-term preparation and commissioning of apparatuses necessary for execution of the deuterium experiment. A comprehensive set of neutron diagnostics was developed and installed onto LHD through numerous efforts in preparation. Neutron diagnostics play an essential role in both neutron yield management for the radiation safety and extension of energetic-particle physics study in LHD. Neutron flux monitor (NFM) characterized by fast-response and wide dynamic range capabilities is successfully working. Total neutron emission rate reached 3.3×1015 (n/s) in the first deuterium campaign of LHD. The highest neutron emission rate was recorded in inward shifted configuration. Neutron yield evaluated by neutron activation system agrees with neutron yield measured with NFM. Performance of vertical neutron camera was demonstrated. Neutron emission profile was inwardly shifted in the inwardly shifted configuration, whereas it was outwardly shifted in the outwardly configuration. Secondary deuterium-tritium neutrons produced by triton burnup in LHD deuterium plasmas were detected for the first time in stellarator/heliotron devices in the world. Similar to total neutron emission rate, the inward shifted configuration provided highest triton burnup ratio. more...
-----------------------

Corotation Plasma Environment Model: An Empirical Probability Model of the Jovian Magnetosphere

by Yoshifumi Futaana, Xiao-Dong Wang, Elias Roussos, Norbert Krupp, Jan-Erik Wahlund, Karin Ågren, Markus Fränz, Stas Barabash, Fan Lei, Daniel Heynderickx, Pete Truscott, Fabrice Cipriani, and David Rodgers
article three image
We developed a new empirical model for corotating plasma in the Jovian magnetosphere. The model, named the corotation plasma environment model version 2 (CPEMv2), considers the charge density, velocity vector, and ion temperature based on Galileo/plasma system (PLS) ion data. In addition, we develop hot electron temperature and density models based on Galileo/PLS electron data. All of the models provide respective quantities in the magnetic equator plane of 9-30 RJ , while the charge density model can be extended to 3-D space. A characteristic feature of the CPEM is its support of the percentile as a user input. This feature enables us to model extreme conditions in addition to normal states. In this paper, we review the foundations of the new empirical model, present a general derivation algorithm, and offer a detailed formulation of each parameter of the CPEMv2. As all CPEM parameters are of the analytical form, their implementation is straightforward, and execution involves the use of a small number of computational resources. The CPEM is flexible; for example, it can be extended, as new data (from observations or simulation results) become available. The CPEM can be used for the mission operation of the European Space Agency’s mission to Jupiter, JUpiter ICy moons Explorer (JUICE), and for future data analyses. more...
-----------------------

Propagation of Ionization Waves in Nanosecond-Pulse Dielectric Barrier Discharge in Atmospheric Air

by Jintao Qiu, Cheng Zhang, Zehui Liu, Yuan Gao, Duo Hu, and Tao Shao
article four image
This paper presents an experimental investigation of ionization waves’ (IWs’) propagation in a nanosecond-pulse dielectric barrier discharge at atmospheric pressure in air. The effect of the rise time and pulse duration on IW propagation is studied by an intensified charge-coupled device, and the mechanism of the discharge propagation is analyzed. The experimental results show that the discharge produced in the rise time of the applied voltage develops in a structure of discontinuous sphere, while the discharge produced in the falling time exhibits a continuous form due to the effect of space charge. Furthermore, the rise time of the applied voltage has a significant influence on the velocity of IWs, and the maximal velocity of IWs rapidly decreases from 0.08 to 0.008 mm/ns when the rise time of the applied voltage increases from 50 to 300 ns. However, the pulse width has almost no influence on the velocity of IWs. The electric field distortion caused by both the propagation of IWs and the accumulation of surface charges is responsible for the formation and propagation of IWs. more...
-----------------------

Tutorial on X-Ray Free-Electron Lasers

by Bruce E. Carlsten
article four image
This paper provides a tutorial on X-ray free-electron lasers (XFELs) which are currently being designed, built, commissioned, and operated as fourth-generation light sources to enable discovery science in materials science, biology, and chemistry. XFELs are complex devices, driven by high-energy, high-brightness electron accelerators and cost on the order of $B. Here, we provide a basic introduction to their operating physics and a description of their main accelerator components. To make their basic operating principle accessible to the electrical engineering community, we rederive the FEL dispersion relation in a manner similar to that done for traveling-wave tubes. We finish with sections describing some unique features of the X-rays generated and on the physics that lead to the main design limitations, including approaches for mitigation. more...
-----------------------

A Tutorial on Electron Sources

by Kevin L. Jensen
article four image
A compact introduction to the history and the canonical equations of electron emission is given for thermal emission (Richardson), field emission (Fowler-Nordheim), photoemission (Fowler-DuBridge), and secondary emission (Baroody), as well as the space-charge-limited flow (Child-Langmuir law). A general equation is derived and related to the canonical equations. Processes that affect emission, such as coatings, shielding, excitation and transport, space charge, emittance, and material properties, are considered. Requirements imposed by beam evolution are discussed. more...
-----------------------

A Tutorial on Vacuum Surface Flashover

by John R. Harris
article four image
This paper is based on a tutorial presented by the author as a part of the Minicourse on charged particle beams and high-powered pulsed sources given at the 2017 International Conference on Plasma Sciences at Atlantic City, NJ, USA. It is intended to provide a brief overview of the phenomenology and physics of the vacuum surface flashover process. These mechanisms will be used to motivate techniques commonly employed to improve the voltage standoff of insulators. In addition to serving as the primary limiting mechanism for vacuum insulators, vacuum surface flashover has a number of beneficial applications, primarily due to its ability to provide a simple pulsed plasma source, and a number of these applications will be discussed. more...
-----------------------
header

A PUBLICATION OF THE IEEE NUCLEAR AND PLASMA SCIENCES SOCIETY

JUNE 2018   |  VOLUME 46  |  NUMBER 6  |  ITPSBD  |  (ISSN 0093-3813)

SPECIAL ISSUE ON PLENARY, INVITED & SELECTED MINICOURSE PAPERS FROM ICOPS 2017


Guest Editorial
Special Issue on Plenary, Invited & Selected Minicourse Papers From ICOPS 2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. L. Lopez, K. H. Becker, A. Dasgupta, and W.-D. Zhu


SPECIAL ISSUE PAPERS
A Tutorial on Vacuum Surface Flashover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. R. Harris
A Tutorial on Electron Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. L. Jensen
Tutorial on X-Ray Free-Electron Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. E. Carlsten
Coaxial–Conical Transition in Magnetically Insulated Transmission Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . W. Zou, B. Wei, L. Liu, J. Jiang, F. Guo, B. Gong, L. Chen, D. Liu, W. Han, W. Wu, J. Liang, M. Wang, S. Feng, W. Xie, and J. Deng
The Role of Ion Acoustic Instability in the Development of the Azimuthal Current Density Profile in Liner Experiments at 1 MA . . . . . . . . . . . . . . .
      . . . . . . . . . S. C. Bott-Suzuki, S. W. Cordaro, L. Atoyan, T. Byvank, W. Potter, B. R. Kusse, J. B. Greenly, D. A. Hammer, and C. A. Jennings
Theoretical Study and Monte Carlo Simulation on the Dynamic Process of a Novel Multipacting Cathode for High-Current Diode . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Dong, Q. Liu, X. Li, H. Zhou, and Z. Dong
Study on After Cavity Interaction in a 140-GHz Model TE0,3 Gyrotron Using 3-D CFDTD PIC Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M.-C. Lin, S. Illy, K. A. Avramidis, M. Thumm, and J. Jelonnek
Propagation of Ionization Waves in Nanosecond-Pulse Dielectric Barrier Discharge in Atmospheric Air . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Qiu, C. Zhang, Z. Liu, Y. Gao, D. Hu, and T. Shao
Experiment to Form and Characterize a Section of a Spherically Imploding Plasma Liner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. C. Hsu, S. J. Langendorf, K. C. Yates, J. P. Dunn, S. Brockington,
      A. Case, E. Cruz, F. D. Witherspoon, M. A. Gilmore, J. T. Cassibry, R. Samulyak, P. Stoltz, K. Schillo, W. Shih, K. Beckwith, and Y. C. F. Thio

Design and Simulation of a T-Vane Relativistic Inverted Magnetron . . . . . . . . . . . . . . . . . . . T. Fleming, M. Lambrecht, P. Mardahl, and J. Keisling



PART II OF TWO PARTS

REGULAR PAPERS
Microwave Generation and Microwave-Plasma Interaction
Development and Demonstration of a Ka-Band Gyrotron Traveling-Wave Tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Liu, Q. Xue, S. Zhang, W. Gu, X. Wang, G. Zhao, D. Zhao, Z. Geng, and S.-X. Xu
Design and Development of MIG for 170-GHz Gyrotron . . . . . . . . . . . . . . . . . . . . . . . . . M. K. Alaria, U. Singh, N. Singh, A. Bera, and A. K. Sinha
A Millimeter-Wave Broadband in situ Alignment and Monitor System Based on Interferometric Direction-Finding Antenna . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Wang, T. Li, H. Li, C. Jiang, Z. Sun, B. Hu, X. Wu, and X. Zhao
Outage Probability Analysis and Dynamic Criterion Calculation Under the Plasma Sheath Channel . . . . . . . . . . . . . . X. Lyu, C. Jiang, and N. Ge

Charged Particle Beams and Sources
Investigation of Electron Beam Generation in Pseudospark Discharge-Based Plasma Cathode Electron Source . . . . . . . . . . Varun and U. N. Pal

Industrial, Commercial, and Medical Applications of Plasmas
Direct Thrust Measurements of an 8-GHz Microwave Electrothermal Thruster . . . . . . J. R. Hopkins, M. M. Micci, S. G. Bilén, and S. G. Chianese
Investigation on the Geometrical Characteristics of Secondary Arc by Image Edge Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Q. Sun, F. Liang, F. Wang, H. Cong, Q. Li, and J. Yan
Study on Inactivation of Escherichia Coli by Double Dielectric Barrier Discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Yao, Y. Liu, J. Zhan, X. Li, A. Zhang, K. Zhang, Z. Yan, S. Cai, C. Yang, W. Sand, Y. Dai, and H. Yang
Prediction of NOX Concentration in Nonthermal Plasma-Treated Diesel Exhaust Using Dimensional Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Allamsetty and S. Mohapatro

Plasma Diagnostics
Spectral Analysis of a Plasma Generated by a Composite Metal Bridge Foil Explosion . . . . . . . . . . . . . . . . . J. Wu, Z. Yan, L. Wang, and L. Chen
Neutron Diagnostics in the Large Helical Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Isobe, K. Ogawa, T. Nishitani, H. Miyake, T. Kobuchi,
      N. Pu,  H. Kawase,  E. Takada,  T. Tanaka,  S. Li,  S. Yoshihashi,  A. Uritani,  J. Jo,  S. Murakami,  M. Osakabe,  and  LHD Experiment Group


Pulsed Power Science and Technology
A Compact MW-Class Short Pulse Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Samizadeh Nikoo and S. M.-A. Hashemi
Fast Ionization-Front-Induced Anomalous Switching Behavior in Trigger Bipolar Transistors of Marx-Bank Circuits Under Base-Drive
      Conditions
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. K. Sinha, M. S. Ansari, A. Ray, G. Trivedi, A. Chatterjee, and R. D. Schrimpf
A Compact All-Solid-State Repetitive Pulsed Power Modulator Based on Marx Generator and Pulse Transformer . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Wang, Q. Huang, L. Xiong, L. Xu, Q. Chen, and Q. Xiong
A New Evaluation Method of Contact Area at Interface Between Pulsed Surface Discharge and Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Furusato, D. Obata, Y. Yamamoto, and T. Yamashita
Influence of Gaussian, Super-Gaussian, and Cosine-Gaussian Pulse Properties on the Electron Acceleration in a Homogeneous
     Plasma
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. Fallah and S. M. Khorashadizadeh
Thermal Analysis in Electromagnetic Launcher With Different Section Shape Rails . . . . . . . . . . . . . . . . . . . . . X. Wan, J. Lou, J. Lu, and D. Liang
Generation of Noble and Refractory Metals Plasma Jets by Electrothermal Discharge for Surface Deposition Applications . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. E. Abdel-kader, M. A. Abd Al-Halim, and M. A. Bourham
DSRD-Based HVdc Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Samizadeh Nikoo, S. M.-A. Hashemi, and M. Vakilian
Marx Generators Based on MOS-Gated Switches With Magnetic Assist for Accelerator Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Perez, T. Sugai, A. Tokuchi, and W. Jiang

Arcs & MHD
Arc Shape and Arc Temperature Measurements in SF6 High-Voltage Circuit Breakers Using a Transparent Nozzle . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Bai, H. Luo, Y. Guan, and W. Liu

Space Plasmas
Corotation Plasma Environment Model: An Empirical Probability Model of the Jovian Magnetosphere . . . . . . . . . . . . . . . Y. Futaana, X.-D. Wang,
     E. Roussos,  N. Krupp,  J.-E. Wahlund,  K. Âgren,  M. Fränz,  S. Barabash,  F. Lei,  D. Heynderickx,  P. Truscott,  F. Cipriani,  and  D. Rodgers

FDTD Analysis of Propagation and Absorption in Nonuniform Anisotropic Magnetized Plasma Slab . . . . . . . . . . . J. Zhang, H. Fu, and W. Scales
Birkeland’s Electromagnetic Cannon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Egeland and C. S. Wedlund

Fusion Science and Technology
Reconstruction of the Plasma Boundary of EAST Tokamak Using Visible Imaging Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Zhang, B. Xiao, Z. Luo, Q. Hang, J. Yang, and D. Weldon
Electromagnetic Launch Science and Technology
Experiment and Analysis on the New Structure of the Coilgun With Stepped Coil Winding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Hu, Y. Wang, Z. Yan, M. Jiang, and L. Liang
Determining the Effect of an Arc in a Railgun Bore on Emission Efficiency Using B-Dot Probes . . . . C. Zhu, L. Li, J. Yue, J. Gu, X. Gao, and B. Li

Special Issue on Vacuum Discharge Plasmas (ISDEIV-PS) 2016
Rotation Characteristics of Vacuum Arcs Driven by Transverse Magnetic Fields . . . . . . . . H. Ma, Z. Zhang, Y. Geng, J. Wang, Z. Liu, and F. Yuan

Special Issue on Selected Papers from SOFE 2017
Design and Analysis of “Filling-Evacuating” High-Pressure Helium-Cooled Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Deng, W. Wang, D. Cheng, S. Huang, J. Yang, and J. Qi
A Study on Deuterium Retention Behavior of Plasma-Facing Materials for EAST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . H.-D. Liu, H.-S. Zhou, M.-Z. Zhao, J. Wu, Y.-P. Xu, J. Wang, Y.-C. Zhang, N.-B. Sun, F. Ding, Q. Xu, G.-N. Luo, and EAST Contributors
The Feasibility of Application of the Existing IVVS Concept to CFETR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Zhou, L. Cao, H. Xu, and D. Yao
Design, Test and Analysis of a Gyrotron Cavity Mock-Up Cooled Using Mini Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . A. Bertinetti, F. Albajar, F. Cau, A. Leggieri, F. Legrand, E. Perial, G. Ritz, L. Savoldi, R. Zanino, and A. Zappatore
Three Confinement Systems—Spherical Tokamak, Standard Tokamak, and Stellarator: A Comparison of Key Component
     Cost Elements
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. G. Brown
Progress on the Design Development for Hard Core Components for USDA Diagnostics at ITER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. R. Gonzalez-Teodoro, Y. Zhai, R. Feder, M. Gomez, A. Zolfaghari, and D. Johnson
Modeling of Ohmic Disruptive Discharge in J-TEXT Using the Tokamak Simulation Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Yang, H. Wang, D. Chu, B. Shi, Q. Zhang, J. Qi, M. Zhang, H. Dong, H. Deng, and W. Wang
Design and Analysis of CFETR CSMC Cooling Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Q. Hao, Y. Wu, D. Yin, Y. Shi, M. T. Hussain, and A. Xu
Overview of the HCPB Research Activities in EUROfusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . F. A. Hernández, F. Arbeiter, L. V. Boccaccini, E. Bubelis, V. P. Chakin, I. Cristescu, B. E. Ghidersa, M. González,
     W. Hering,   T. Hernández,   X. Z. Jin,   M. Kamlah,   B. Kiss,   R. Knitter,   M. H. H. Kolb,   P. Kurinskiy,  O. Leys,  I. A. Maione,  M. Moscardini,
     G. Nádasi,   H. Neuberger,   P. Pereslavtsev,   S. Pupeschi,   R. Rolli,   S. Ruck,   G. A. Spagnuolo,   P. V. Vladimirov,   C. Zeile,  and  G. Zhou

The Design on Pulse Distributor and its Online Status Diagnosis for ITER PF ac/dc Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Chen, L. Huang, P. Fu, G. Gao, S. He, and Z. Wang
The Design of Real-Time Communication System Based on RFM and MRG Real Time for EAST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. C. Li, Z. S. Ji, F. Wang, Q. P. Yuan, S. Li, and Z. H. Xu
Improving Accuracy of Noninterceptive Current Measurement for Use in IFMIF/EVEDA Accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Hirata, A. Kasugai, K. Nishiyama, and A. Marqueta
Investigation on the Effect of Tritium Breeding Ratio Using Temperature Control Mechanism for DEMO Blanket . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Qiu, J. Zhang, C. Liu, D. Yao, and X. Gao
Preliminary Design of the CFETR HCCB Blanket With S-Shaped Cooling Plate in BU and Thermal–Mechanical Analysis of the First Wall . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Xu, M. Lei, M. Ye, and K. Xu
NBImag: A Useful Tool in the Design of Magnetic Systems for the ITER Neutral Beam Injectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Aprile, G. Chitarin, and N. Marconato
Experimental Study on Natural Circulation Heat Transfer of Square Channel in Water-Cooled Blanket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Bao, Y. Guo, S. Liu, and C. Peng
Anisotropic Neutron Emission Spectrum and Its Utilization for Verification of Nuclear Elastic Scattering Effect in Proton-Beam-Injected
      Deuterium Plasmas
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Matsuura, Y. Kawamoto, S. Sugiyama, and S. Kajimoto
A Method for Diagnosis of Poloidal Field Coils’ Current Based on Inversion of Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Tian, Z. Huang, Y. Wang, and Z. Chen
Effect of High-Energy-Rate Forging on Microstructure and Properties of W-TaC Alloys . . . . . . . . . . . . F. Feng, Y. Lian, X. Liu, J. Wang, and Y. Xu
Preliminary Analysis on DNB in the First Wall of WCCB Blanket for CFETR . . . . . . . . . . . . . . K. Jiang, M. Li, H. Bao, S. Lin, K. Huang, and S. Liu
3-D Unsteady Model for Be-Steam Reaction in Water-Cooled Ceramic Breeder Blanket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Khodak, X. Cheng, S. Liu, P. H. Titus, and G. H. Neilson
Preparation and Commissioning for the LHD Deuterium Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . M. Osakabe, M. Isobe, M. Tanaka, G. Motojima, K. Tsumori, M. Yokoyama, T. Morisaki, Y. Takeiri, and LHD Experiment Group


ANNOUNCEMENTS
Call for Papers—Special Issue on Spacecraft Charging Technology-2018
Call for Papers—The 15th Workshop on the Physics of Dusty Plasmas
Call for Papers—Special Issue on Plasma-Assisted Technologies
Call for Papers—Special Issue for Selected Papers from EAPPC/BEAMS 2018
Call for Papers—Special Issue for Plenary, Invited and Selected Papers from the 2018 Asia-Pacific Conference on Plasma
                            and Terahertz Science

Accessibility | Privacy and Opting Out of Cookies | Nondiscrimination Policy

Copyright 2018 IEEE - All rights reserved. Use of this newsletter site signifies your agreement to the IEEE Terms and Conditions.
A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. [Response: Read Receipt]

If you would like to be removed from this email distribution, please [Response: Unsubscribe from List].
If you have unsubscribed in error, please [Response: Subscribe to List].
To unsubscribe from all mailings, use your IEEE Account to update your "Personal Profile and Communication Preferences."

Replies to this message will not reach IEEE. Due to local email service/provider settings, random characters may appear in some instances.

Although the IEEE is pleased to offer the privilege of membership to individuals and groups in the OFAC embargoed countries, the IEEE cannot offer certain services to members from such countries.

IEEE
445 Hoes Lane
Piscataway, NJ 08854 USA
+1 800 678 4333 (toll free, US & Canada)
+1 732 981 0060 (Worldwide)

For more information or questions regarding your IEEE Membership or IEEE Account, please direct your inquiries to the IEEE Contact Center.