T-NPS Header
T-PS Home  |  Editorial Board  |  T-PS in IEEE Xplore  |   Early Access  |  Manuscript Submission
MAY 2018 FEATURE ARTICLES - THESE ARE OPEN ACCESS FOR A LIMITED TIME

Improved Scattering-Matrix Method and its Application to Analysis of Electromagnetic Wave Reflected by Reentry Plasma Sheath

by Xu-Yang Chen, Fang-Fang Shen, Yan-Ming Liu, Wei Ai, and Xiao-Ping Li
article one image
In this paper, we propose an improved scattering-matrix method (ISMM) to deal with the propagation of electromagnetic (EM) wave in plasma. As a stratification-based method, the ISMM is based on the scattering-matrix method (SMM) and thus inherits the advantages of the SMM in accuracy and high efficiency. But different from the SMM, the ISMM improves the scattering matrices by adjusting the reference point for each layer interface, making the matrices more robust in calculation. This improvement enhances the robustness of the method in dealing with various media situations, especially for the case of a metal as the floor layer and that of extreme plasmas, which is a weakness for the SMM. After presenting the ISMM, we use it to analyze the EM wave reflected by a reentry plasma sheath, which is an important field but with few new results. With the study of various plasma parameters of the reentry plasma sheath, the ISMM is applied to reveal the characteristics of the sheath. In simulations, the validity of the ISMM is first demonstrated, and then the reflection, transmission, and absorption properties of the EM wave propagating in the plasma sheath are studied by the ISMM. The phenomena of "sunken regions" and "phase jumps" of the plasma sheath are revealed in simulations, which may cause energy loss and distortion of the EM wave. more...
-----------------------

Pulsed Voltage Adder Topology Based on Inductive Blumlein Lines

by Liang Yu, Zezheng Jiu, Taichi Sugai, Akira Tokuchi, and Weihua Jiang
article two image
A new scheme of pulsed voltage adding using inductively charged Blumlein lines has been proposed and experimentally demonstrated. The circuit principle is explained based on the analogy with capacitively charged Blumlein lines. In the experiments, striplines have been used for inductive energy storage, and SiC power devices have been used as the opening switches. The experimental results have proved both the circuit behavior and the voltage adding by using multimodule stack. This circuit method is expected to become a new approach to compact and repetitive pulsed-power generation. more...
-----------------------

Indium-Tin Oxide-Coated Glass for Passive Ion Collection on Small-Scale Spacecraft

by Jesse K. McTernan, Austin C. Small, and Sven G. Bilén
article three image
A small-scale spacecraft has limited resources and requires innovative solutions to enable capabilities similar to those of a larger spacecraft. In particular, a small-scale spacecraft has a limited outer surface area, which is typically used for body-mounted solar panels, yet may be required for passive ion collection when in situ plasma measurements are conducted. We present the results of ground-based experiments demonstrating that indium-tin oxide-coated glass is effective as a dual-purpose material for facilitating solar panel operation (due to its transparency and resistance to atomic oxygen degradation) as well as for passive ion collection (due to its surface conductivity). The test facilities utilize a plasma-generating device that produces a low earth orbit-like environment within a vacuum chamber. We used physical vapor deposition to apply gold contact patches to make electrical connections from the indium-tin oxide-coated glass to the spacecraft. The results indicate that the materials with relatively high work functions collect less current from the plasma environment than the materials with relatively lower work functions. The resultant contact potential difference generated from the disparate work functions can be used to further mitigate spacecraft charging. more...
-----------------------

Simulation of Helical Flux Compression Generator

by Sergey V. Anischenko, Pavel T. Bogdanovich, Alexandra A. Gurinovich, and Andrey V. Oskin
article four image
Diverse approaches to helical flux compression generator's (HFCG) inductance, resistance, and armature expansion calculations are evaluated. Comparison of simulated and experimentally obtained results is provided. Validity criteria for different simulation models are proposed. Consideration of armature acceleration under the pressure of detonation products and magnetic pressure is shown to be beneficial for accuracy of HFCG simulation. Control of HFCG temperature during simulation enables detecting the critical points of system operation. more...
-----------------------

Engineering Challenges in W7-X: Lessons Learned and Status for the Second Operation Phase

by H.-S. Bosch, T. Andreeva, R. Brakel, T. Bräuer, D. Hartmann, A. Holtz, T. Klinger, H. Laqua, M. Nagel, D. Naujoks, K. Risse, A. Spring, T. Sunn Pedersen, T. Rummel, P. van Eeten, A. Werner, R. Wolf, and the W7-X Team
article five image
In 2015, the optimized stellarator Wendelstein 7-X stellarator (W7-X) started with operation. The main objective of W7-X is the demonstration of the integrated reactor potential of the optimized stellarator line. An important element of this mission is the achievement of high heating power and high confinement in the steady-state operation. The approach to this mission is the following three steps. First, plasmas were produced in a limiter configuration [operation phase (OP 1.1)], then a test divertor unit is being installed (temporary divertor unit) for the next campaign, OP 1.2, before the full steady-state capability will be achieved implementing active cooling of all in-vessel components and a steady-state high heat-flux divertor. In December 2015, the first helium plasma was generated using electron cyclotron resonance heating (ECRH), in February 2016, the working gas was switched to hydrogen. The first OP (OP 1.1) was successfully finished in March 2016. At the end of OP 1.1, the discharge duration was close to 6 s, the limit for the integrated heating power was increased to 4 MJ and electron temperatures of ~10 keV were achieved. more...
-----------------------

Prospect Toward Steady-State Helical Fusion Reactor Based on Progress of LHD Project Entering the Deuterium Experiment Phase

by Y. Takeiri
article three image
Large Helical Device (LHD) is one of the world largest superconducting fusion experiment devices, having demonstrated its inherent advantage for steady-state operation since the start of experiments in 1998. LHD has also demonstrated reliable operation of the large-scale superconducting magnet system for almost two decades. Development of the challenging heating systems, such as negative-ion-based neutral beam injection (NBI), high-power and high-frequency electron cyclotron heating, and steady-state ion cyclotron heating, have led to wide-ranging physics and engineering achievements. LHD has progressed to the next stage, that is, the deuterium experiment starting in March 2017, which should further extend plasma parameters toward reactor-relevant regime. For establishing firm basis for designing steady-state helical fusion reactor, advanced physics research, such as on isotope effect, energetic particle confinement, and plasma-wall interaction, will be intensively performed in the deuterium experiments. In an engineering aspect, the upgrade of NBI system has been carried out in preparation to the deuterium experiment, and it should contribute to future NBI development for fusion reactors including ITER. more...
-----------------------
header

A PUBLICATION OF THE IEEE NUCLEAR AND PLASMA SCIENCES SOCIETY

MAY 2018   |  VOLUME 46  |  NUMBER 5  |  ITPSBD  |  (ISSN 0093-3813)

SPECIAL ISSUE ON SELECTED PAPERS FROM SOFE 2017


Guest Editorial
Special Issue on Selected Papers from SOFE 2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E. Surrey


SPECIAL ISSUE PAPERS
Experimental Devices
First Results of ELM Triggering With a Multichamber Lithium Granule Injector Into EAST Discharges. . . . . . . . . . Z. Sun, R. Lunsford, R. Maingi,
     J. S. Hu,  D. K. Mansfield,  A. Diallo,  K. Tritz,  J. Canik,  Z. Wang, D. Andruczyk, Y. M. Wang, G. Z. Zuo, M. Huang, W. Xu,  and  X. C. Meng

Active Recycling Control Through Lithium Injection in EAST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. M. Canik, Z. Sun, J. S. Hu, G. Z. Zuo,
     W. Xu,   M. Huang,   L. Wang,   J. Xu,  T. Zhang,  R. Maingi,  R. Lunsford,  A. Diallo,  D. Mansfield,  T. Osborne,  K. Tritz,  and  EAST  Team

Mechanical Monitoring Issues in Preparation to Next Step of Wendelstein 7-X Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. Bykov, A. Carls, J. Zhu, P. van Eeten, L. Wegener, H.-S. Bosch, and W7-X Team
Diversification of the Position Sensing Instrumentation for the JET Neutral Beam Calorimeters. . . . . . . . P. Blatchford, J. Hawes, and S. Warder
Smoothly Varying Injected Neutral Beam Voltage and Current Provides New Capability on the DIII-D Tokamak . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. T. Scoville, B. J. Crowley, D. C. Pace, and J. M. Rauch
Technical Issues With Steady-State Operation in KSTAR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J.-G. Kwak and S. J. Wang
Web Services for 3D MHD Equilibrium Data at Wendelstein 7-X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . M. Grahl, J. Svensson, A. Werner, T. Andreeva, S. Bozhenkov, M. Drevlak, J. Geiger, M. Krychowiak, Y. Turkin, and W7-X Team
A Quasi-Periodic Linear Feeder for the Impurity Granular Injection on DIII-D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . .A. Nagy, A. Bortolon, W. Brown, P. Fisher, R. Lunsford, R. Maingi, D. Mansfield, D. Mauzey, R. Nguyen, and M. Vorenkamp
A New User Front End for EAST Remote Participation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Sun, Z. Ji, F. Wang, and Y. Wang
Engineering Challenges in W7-X: Lessons Learned and Status for the Second Operation Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H.-S. Bosch, T. Andreeva, R. Brakel, T. Bräuer, D. Hartmann, A. Holtz, T. Klinger,
      H. Laqua,  M. Nagel,  D. Naujoks,  K. Risse,  A. Spring,  T. S. Pedersen,  T. Rummel,   P. van Eeten,   A. Werner,   R. Wolf,  and  W7-X Team


Fusion R&D Facilities, Demonstrator and Fusion Power Plant Designs
Prospect Toward Steady-State Helical Fusion Reactor Based on Progress of LHD Project Entering the Deuterium Experiment Phase . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Takeiri
Development of a Utility Negative Ion Test Equipment With RF Source at ASIPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Wei,  C. Hu,  Y. Xie,  C. Jiang, L. Liang, Y. Wang, Y. Gu, J. Yan, Y. Xu, Y. Xie, and NBI Team
Tokamak Design and Maintenance Scheme Tradeoff Application on CFETR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E. Villedieu, Y. T. Song, Y. Cheng, J. Zhan, and C. Dechelle
Transient Stability Analysis of a Flexible Generator Used in Fusion Power Plant . . . . . . . . . . . . . H. Li, P. Fu, Z.-Q. Song, G. Li, and M. U. Hassan
Prospects for Stellarators Based on Additive Manufacturing: Coil Frame Accuracy and Vacuum Vessels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. Queral, S. Cabrera, E. Rincón, and V. Mirones
Analysis of Dogleg Duct Experiments With 14-MeV Neutron Source Using TRIPOLI-4 Monte Carlo Transport Code . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Lei, Y. Peneliau, Y.-K. Lee, and Y. Song
Real-Time 2-D Optical Polarization Properties of the Fusion Reactor First Mirror Based on Active Polarized Beams . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Qi, W. Wang, B. Pan, H. Zhang, J. Yang, H. Deng, B. Shi, and H. Shan
Laser Boron Fusion Reactor With Picosecond Petawatt Block Ignition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Hora, S. Eliezer, J. Wang, G. Korn, N. Nissim, Y.-X. Xu, P. Lalousis, G. J. Kirchhoff, and G. H. Miley
Comparison of Deformation Models of Flexible Manipulator Joints for Use in DEMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Li, H. Wu, H. Handroos, R. Skilton, J. Keep, and A. Loving
Plasma Control Requirements for Commercial Fusion Power Plants: A Quantitative Scenario Analysis With a Dynamic Fusion
     Power Plant Model
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Takeda, S. Sakurai, R. Kasada, and S. Konishi
Integrating Materials Engineering and Design for Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Gorley, M. Fursdon, and M. Kalsey
MAST Upgrade Divertor Facility: A Test Bed for Novel Divertor Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . W. Morris, J. R. Harrison, A. Kirk, B. Lipschultz, F. Militello, D. Moulton, N. R. Walkden, and MAST-Upgrade Team

Diagnostics, Data Acquisition, Control & Machine Protection
Rectangular Magnetic Sensor Array for Current Measurement by the Quadrature Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Q. Guo, P. Fu, G. Gao, L. Jiang, L. S. Wang, and Y. R. Bai
Design and Implementation of HL-2A Host Centralized Control System FSM Model Based on EPICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Xu, F. Dong, P. Tian, F. Tang, and Q. Yang
Prototype Design of a 700 °C In-Vacuum Blackbody Source for it In Situ Calibration of the ITER ECE Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Ouroua, J. Beno, A. Bryant, A. Khodak, P. Phillips, W. Rowan, G. Taylor, and D. Weeks
Nuclear and Thermal Analysis of a Reflectometry Diagnostics Concept for DEMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . .R. Luís, R. Moutinho, L. Prior, P. B. Quental, A. Lopes, H. Policarpo, N. Velez, A. Vale, A. Silva, and A. Malaquias
Design and Analysis Progress of ITER Diagnostic Equatorial Port #09 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Zhai, A. Basile, R. Feder, W. Wang,
      J. Chen,   A. Khodak,   J. P. Klabacha,  D. Johnson,  M. Hause,  M. Messineo,  H. Zhang, J. R. Gonzalez-Teodoro, J. Guirao, and S. Iglesias

EM Analysis of ITER Diagnostics Upper Port Plugs 14 and 11 During Plasma Disruptions . . . . . . . . . . . . . . . . . . . .Y. Zhai, J. Chen, and R. Feder
The In-Vessel Protection Components for ITER First Plasma Operation . . . . . . . . . . . . . . . . . . . . R. Hunt, R. Mitteau, M. Lehnen, and R. Raffray
Recent Improvement of the Design of the ITER Steady-State Magnetic Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Entler, M. Kocan, I. Duran, G. Vayakis, F. Lucca, F. Vigano, and R. Cantu
Docker-Based Automatic Deployment for Nuclear Fusion Experimental Data Archive Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Q. Liu, W. Zheng, M. Zhang, Y. Wang, and K. Yu
Study of a Plasma Boundary Reconstruction Method Based on Reflectometric Measurements for Control Purposes . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . G. Marchiori, G. De Masi, R. Cavazzana, A. Cenedese, N. Marconato, R. Moutinho, A. Silva, and EUROfusion-IM Team
High-Priority Prototype Testing in Support of System-Level Design Development of the ITER Radial Neutron Camera . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Riva, B. Esposito, D. Marocco, M. Cecconello, J. Kotula,
      F. Moro,  F. Belli,  D. Bocian,  P. Carvalho, C. Centioli, T. Cieslik, S. Conroy, N. Cruz, M. Curylo, A. Fernandes,  L. Di Pace,  A. Hjalmarsson,
      R. Kantor,   A. Lampasi,   G. Mazzone,   F. Pompili,   R. C. Pereira,   S. Podda,   F. Pollastrone,   B. Santos,   A. Zimbal,    and    B. Brichard

Advances in Low-Temperature Tungsten Spectroscopy Capability to Quantify DIII-D Divertor Erosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Abrams, D. M. Thomas, E. A. Unterberg, and A. R. Briesemeister
Design of a High Resolution Probe Head for Electromagnetic Turbulence Investigations in W7-X . . . . . . . . . . . . . . . . . . . . . . . . . . P. Agostinetti,
      M. Spolaore,  M. Brombin,  V. Cervaro,  L. Franchin, O. Grulke, C. Killer, E. Martines, M. Moresco, S. Peruzzo, N. Vianello, and  M. Visentin

High-Speed Visible Image Acquisition and Processing System for Plasma Shape and Position Control of EAST Tokamak . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Zhang, B. Xiao, Z. Luo, Q. Hang, and J. Yang
Design a Suitable Test Scheme for Triggering Bypass Protection Test of ITER PF Converter Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Zhang, G. Gao, P. Fu, Z. Song, and B. Wang
Estimation of X-Mode Reflectometry First Fringe Frequency Using Neural Networks . . . . . D. E. Aguiam, A. Silva, L. Guimarãis, P. J. Carvalho,
      G. D. Conway,     B. Goncalves,    L. Meneses,  J.-M. Noterdaeme,  J. M. Santos,  A. A. Tuccillo,  O. Tudisco,  and  ASDEX Upgrade Team

Upgrade Design of Lower Divertor Langmuir Probe Diagnostic System in the EAST Tokamak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. C. Xu,
      L. Wang,  G. S. Xu,  W. Feng,  H. Liu,  J. B. Liu, W. Zhang, T. F. Ming, C.-S. Yip, G. Z. Deng, S. Y. Dai, D. M. Yao, G. N. Luo, and H. Y. Guo

A Rogowski Digital Integrator With Comb Filter Signal Processing System . . . . . . . . . . . . . . Z. Zhang, P. Fu, G. Gao, L. Jiang, and Linsen Wang
Signal Transmission Links for the Electron Cyclotron Resonance Heating System on J-TEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F. Cui, D. Xia, C. Liu, Z. Yu, Y. Jin, H. Ma, and Z. Wang
Extreme Ultraviolet Spectroscopy Applied to Study RMP Effects on Core Impurity Concentration in EAST . . . . . . . . . . . . . . . . . . . . . . . G. Vogel,
      H. Zhang,  Y. Shen,  Y. Sun,  Q. Zang,  S. Gu,  N. Chu,  J. Fu,  J. Chen,  R. Hu,  X. Du,  Q. Wang, Y. Yu, S. Mao, B. Lyu, M. Ye, and B. Wan

New Control Abilities on EAST PCS for Steady-State Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Q. P. Yuan, B. J. Xiao, K. Wu, R. D. Johnson, Y. Huang, Y. Guo, and R. R. Zhang
Progress of Concept Design for CFETR Diagnostic System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Y. Yang, G. Li, Y. Wang,
      T. Ming,  X. Han,  S. Liu,  E. Wang,  W. Yang,  H. Liu, Z. Zou,  W. Li,  H. Qu,  Y. Liu,  G. Li,  Q. Hu,  X. Gao, J. Li, Y. Wan, and CFETR Team

A Rapid Nondestructive Inspection Method Applied to EAST Lower Divertor by Infrared Thermography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Y. Liu, T. Xu, L. Han, L. Li, and D. Yao

Heat Flux, First Wall and Divertors
Preliminary Experimental Study on Hypervapotron Heat Transfer for High Heat Flux Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Chu, H. Jiang, H. Deng, J. Yang, and W. Wang
Simulation Study of Large Power Handling in the Divertor for CFETR Phase II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. J. Liu, G. Q. Li, D. Zhao, X. Jian, G. Z. Deng, N. Shi, D. F. Kong, V. Chan, and X. Gao
The Influence of Divertor Plasma Parameter on Tungsten Screening in High Recycling Regime for CFETR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Xu, Y. Zhou, S. Mao, D. Kong, L. Li, V. Chan, and M. Ye
Modeling and Preparation for Experimental Testing of Heat Fluxes on W7-X Divertor Scraper Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. D. Lore, M. Cianciosa, H. Frerichs, J. Geiger, H. Hoelbe, J. Boscary, and W7-X Team
Simulation of Heat Flux to the DEMO First Wall Due to Filamentary Transport in the Far SOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Pestchanyi
Design and Test of Wendelstein 7-X Water-Cooled Divertor Scraper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Boscary, H. Greuner,
      G. Ehrke,  B. Böswirth,  Z. Wang,  E. Clark,  A. Lumsdaine,  J. Tretter,  P. Junghanns,  R. Stadler,  D. McGinnis,  J. Lore,   and   W7-X Team

The Reliability Design of CFETR Divertor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Cao, Z. Zhou, P. Zi, and D. Yao
RAMI Analysis for PFCs of EAST Divertor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Zhang, S. Qin, L. Cao, D. Yao, and J. Li
Geometry and Physics Design of Lower Divertor Upgrade in EAST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . H. Xu, D. Yao, Z. Zhou, L. Cao, L. Li, L. Han, G. Xu, L. Wang, H. Si, Y. Chen, X. Liu, Z. Yang, C. Sang, and H. Du

Tritium Breeding, Fueling and Systems
Current Status and Progress on the Shielding Blanket of CFETR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Liu, H. Yang, J. Zhang, J. Zhang, L. Li, Y. Qiu, D. Yao, and X. Gao
Steady State and Transient Thermal Analysis of the Updated Helium-Cooled Solid Breeder Blanket for CFETR . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Zhou, S. Wang, C. Jin, H. Chen, and M. Ye
Core Fueling of DEMO by Direct Line Injection of High-Speed Pellets From the HFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . A. Frattolillo, L. R. Baylor, F. Bombarda, S. K. Combs, C. Day, P. T. Lang, S. Migliori, B. Pégourié, and B. Ploeckl
Thermal-Hydraulic Analysis of the EU DEMO Helium-Cooled Pebble Bed Breeding Blanket Using the GETTHEM Code . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Froio, F. Cismondi, L. Savoldi, and R. Zanino
Recent Progress in the WCLL Breeding Blanket Design for the DEMO Fusion Reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Tassone, A. Del Nevo, P. Arena, G. Bongiovì, G. Caruso, P. A. di Maio,
      G. di Gironimo,   M. Eboli,   N. Forgione,   R. Forte,  F. Giannetti,  G. Mariano,  E. Martelli,  F. Moro,  R. Mozzillo,  A. Tarallo,   and   R. Villari

The Numerical Simulation for the Heat Transfer Enhancement Experiments of the HCCB-TBM First Wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Cheng, W. Wang, H. Deng, B. Shi, J. Han, J. Yang, and H. Wang
A New Concept for a Higher Burn-Up Fraction Improvement in DEMO Reactor . . . . . . . . . . . . . . . . . . . . . Y. Igitkhanov, C. Day, and S. Varoutis
Neutronics Analysis of Helium Cooled Ceramic Breeder Blanket with S-shaped Lithium Zone and Cooling Plate for CFETR . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Lu, K. Xu, M. Ye, M. Lei, Shifeng Mao, and X. Liu

Magnets
Qualification of the U.S. Conductors for ITER TF Magnet System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. N. Martovetsky, W. T. Reiersen, G. R. Murdoch, P. Bruzzone, and B. Stepanov
Test Results About Simple CDA + MIK Quench Detection Method on EAST for ITER Superconducting CS Coils . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Hu, Y. Xiao, B. J. Xiao, Biao Shen, T. Wang, and Quench Group
Type Tests of JT-60SA Central Solenoid/Equilibrium Field Superconducting Magnet Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . P. Zito, A. Lampasi, L. Novello, M. Matsukawa, K. Shimada, S. Hatakeyama, M. Portesine, A. Dorronsoro, D. Vian, and K. Celaya
Experimental Investigation on the Second Commutation Process of a Quench Protection Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Shi, S. Li, Z. Gao, Q. Wang, Y. Hou, S. Jia, and L. Wang
ITER PF6 Dummy Double Pancake Winding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. Wen, S. Du, P. Readman, W. Wu, G. Shen, and J. Chen
Conceptual Design of CFETR CS Model Coil Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Yin, Y. Wu, H. Han, A. Xu, Q. Hao, and X. Liu
Structural Stress Analysis of the CFETR Central Solenoid Model Coil . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Xu, Y. Wu, D. Yin, J. Jin, and J. Qin
Challenges for the Wendelstein 7-X Magnet Systems During the Next Operation Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Rummel, K. Risse, M. Nagel, Thomas Mönnich, F. Füllenbach, H.-S. Bosch, and W7-X Team
Winding Design for CFETR Central Solenoid Model Coil . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Han, Y. Wu, D. Yin, J. Qin, Yi Shi, and Z. Kuang
NSTX-U In-Vessel Control Coils’ Design Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . N. D. Atnafu, A. Brooks, D. Cai, J. Dellas, S. Gerhardt, J. Menard, M. Ono, G. Labik, P. Titus, and J. R. González-Teodoro

Materials, Plasma Interactions & MHD
Transverse Velocity Effect on Hunt’s Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Wang, J. Mao, K. Liu, S. Wang, and L. Yu
Establishing Full Covering Liquid Metal Film Flows Under Poor Wetting Conditions for Liquid Divertors of Fusion Reactors . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Zhang and C. Pan
The Experimental Investigation of Wetting Property for Liquid Lead Bismuth Alloy With ADS Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. Lu, W. Wang, D. Cheng, G. Zuo, H. Jiang, B. Pan, D. Chu, W. Xu, and J. Hu
Performance of Full Compositional W/Cu Functionally Gradient Materials Under Quasi-Steady-State Heat Loads . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Wang, D. Zhu, C. Li, and J. Chen
Progress in the Development of CFC/CuCrZr Components for HL-2M Divertor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Lian, J. Wang, F. Feng, X. Liu, Guoyao Zheng, and L. Cai
Development, Characterization, and Testing of a SiC-Based Material for Flow Channel Inserts in High-Temperature DCLL Blankets . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . C. Soto, C. García-Rosales, J. Echeberria, E. Platacis, A. Shisko, F. Muktepavela, T. Hernández, and M. M. Huertac
Hydrogen Isotopes Plasma-Driven Permeation Through Sputter-Deposited Tungsten-Coated F82H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Xu, Y. Hirooka, N. Ashikawa, and T. Nagasaka

Plant Components, Vacuum & Heating and Current Drive
Thermal and Mechanical Analysis of the Wendelstein7-X Cryo-Vacuum Pump Plug-In . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Wang, G. Ehrke, B. Mendelevitch, J. Boscary, R. Stadler, and W7-X Team
Numerical–Experimental Benchmarking of a Probabilistic Code for Prediction of Voltage Holding in High Vacuum . . . . . . . . . . . . . . . . . N. Pilan,
      A. Kojima,  R. Nishikiori,  M. Ichikawa,  J. Hiratsuka,  R. Specogna,  A. De Lorenzi,  M. Bernardi,  L. Lotto,   P. Bettini,   and   M. Kashiwagi

Pumping Performance Evaluation of HL-2M In-Vessel Cryopump With Monte Carlo Method . . . . . . . . . Y. Li, Z. Zhang, Y. Qiu, F. Zha, and Q. Li
Refined Multiphysics Analysis of W7-X Cryopumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Zhu, V. Bykov, M. Nagel, G. Ehrke, J. Fellinger, L. Wegener, H.-S. Bosch, and W7-X Team
Reverse Engineering of CFETR Vacuum Vessel Mockup . . . . . . . . . . . . . . . . . . . . . . H. Ji, Y. Gu, J. Wu, Z. Liu, Xiaosong Fan, J. Ma, and X. Xia
Study on the Welding Process of the Vacuum Vessel Mock-Up for CFETR . . . . . . . . . . . . . . . . . . . . . . . . Z. Liu, J. Wu, J. Ma, X. Fan, and L. Xiu
Preliminary Design for Diagnostic Port Integration at ITER Upper Port #18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Pak, Y. H. An, C. S. Seon, J. H. Choi, M. S. Cheon, H. G. Lee, V. Udintsev, and T. Giacomin
The Forming Die Design and Experimental Research of CFETR Vacuum Vessel Shells . . . . . . . . . . . . . . . . . . H. Yuncong, R. Hong, and H. Jilai
Numerical Analysis of Fracture Behavior of HL-2M Vacuum Vessel Subjected to Electromagnetic Force During Plasma Disruption . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Pei, Y. Wang, K. Wang, and Z. Chen
Polarizer Designed for the Electron Cyclotron Resonance Heating System on J-TEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. H. Liu, D. H. Xia, Z. J. Wang, F. T. Cui, Q. Yu, and J-TEXT team
Review of the Innovative H&CD Designs and the Impact of Their Configurations on the Performance of the EU DEMO Fusion
      Power Plant Reactor
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Franke,
      P. Agostinetti,   G. Aiello,   K. Avramidis,   Ch. Bachmann, A. Bruschi,  G. Federici,  S. Garavaglia,  G. Granucci,  G. Grossetti,  J. Jelonnek,
      J.-M. Noterdaeme,   A. Simonin,   T. Scherer,   P. Sonato, D. Strauss,  M. Q. Tran,  A. Valentine,  P. Vincenzi,  R. Wenninger,  and S. Zheng

Design and Analysis Progress of US ITER Diagnostic Upper Port #14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . Y. Zhai, A. Jariwala, W. Wang, R. Feder, B. Linn, J. Chen, N. Dean, M. Smith, H. Zhang, J. Guirao, and S. Iglesias
Optics and Thermomechanical Analysis of the Accelerator for the DEMO Neutral Beam Injector . . . . . . . . . . . . . . . P. Agostinetti and P. Sonato
Design, Analysis, and Optimization of the Cryopanel Cooling System for CFETR Torus Cryopump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Chen, C. Chen, G. Wang, Q. Wang, and D. Yao

Power Supplies & Power Control
Operation Analysis and Improvement of Impulse Current Test on High-Power DC Test Platform With SVC System . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Wang, L. Xu, P. Fu, Y. Wu, H. Mao, and J. Li
Design of the Power Supply for Alfvé Eigenmodes Excitation on J-TEXT . . . . . . . . . . . . . . . S. Zhou, B. Rao, J. Y. He, Q. M. Hu, and G. Zhuang
Design and Manufacturing of the SiC-Based Power Supply System for Resistive-Wall-Mode Control in JT-60SA . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . A. Ferro, F. Gasparini, E. Gaio, M. Tomasini, P. Milani, E. Massarelli, L. Novello, M. Matsukawa, S. Hatakeyama, and K. Shimada
A Power Module Designed for Compressed Plasma in EAST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Weng, G. Li, and S. Zhang
Exploration of the Voltage Control Mode of Second-Generation EAST Active Feedback Power Supply . . . . . . . . . . H. Huang, N. Bi, and H. Wang
A Maximum Current Control Method for Three-Phase PWM Rectifier for the ITER In-Vessel Vertical Stability Coil Power Supply . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Qian, G. Gao, and Z. Sheng
Implementation of an Excitation Controller for an Impulse Motor-Generator . . . . . . . . . . . . . . C. Wang, H. Li, M. Bu, W. Li, Y. Wang, and W. Xuan
The Development of Power Supply for Negative Ion Source Extraction Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . C.-D. Hu, M.-C. Huang, C.-C. Jiang, Y.-H. Xie, J.-L. Wei, L.-Z. Liang, Y.-Z. Zhao, S.-Y. Chen, and Y.-L. Xie

Safety and Environment
Thermal–Hydraulic Analysis for One Water-Cooled Blanket Module of CFETR Based on RELAP5 . . S. Lin, X. Cheng, K. Jiang, X. Ma, and S. Liu
Shutdown Dose Rate Calculation for the Preliminary Concept of K-DEMO Equatorial Port Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Park, S. Kwon, K. Im, B. Kim, and S.-H. Hong

Project Management
Assessing Component Suitability and Optimizing Fusion Plant Design—Alternative Approaches to TRLs . . . . E. Surrey, J. Linton, and M. Sadler
Early Lessons From the Application of Systems Engineering at UKAEA (May 2017) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Wolff, R. Brown, P. Curson, R. Ellis, T. Galliara, and M. Harris

PART II OF TWO PARTS


REGULAR PAPERS
Basic Processes in Fully and Partially Ionized Plasmas
Study on Effect of Neutral Gas Pressure on Plasma Characteristics in Capacitive RF Argon Glow Discharges at Low Pressure by
     Fluid Modeling
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Samir, Y. Liu, and L. Zhao

Microwave Generation and Microwave-Plasma Interaction
Equivalent Multisector Analytical Method for High-Frequency Characteristics of Integrated Three-Helix TWT . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Zhang, Z. Yin, H. Yuan, H. Fan, N. Bai, C. Shen, X. Zhao, J. Feng, F. Liao, and X. Sun
Improved Scattering-Matrix Method and Its Application to Analysis of Electromagnetic Wave Reflected by Reentry Plasma Sheath . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X.-Y. Chen, F.-F. Shen, Y.-M. Liu, W. Ai, and X.-P. Li

Industrial, Commercial, and Biological Applications of Plasmas
Development, Characterizations, and Applications of a Hand Touchable DC Plasma Needle for Biomedical Investigation . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Bora, A. Aguilera, J. Jain, G. Avaria, J. Moreno, S. B. Gupta, and L. Soto
Physical Alloying of Plasma Metallization Nanocomposite Coating by Allotropic Carbon Nanostructures—Part 1:
     Experimental Research
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. I. Vysikaylo, V. S. Mitin, É. E. Son, and V. V. Belyaev
Physical Alloying of Plasma Metallization Composite Coating by Allotropic Carbon Nanostructures—Part 2: Analytical Research . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. I. Vysikaylo, V. S. Mitin, and V. V. Belyaev
Corona Discharge-Induced Rain and Snow Formation in Air . . . . . . . . . . . . . . . . . . . . . Y. Yang, X. Tan, D. Liu, X. Lu, C. Zhao, J. Lu, and Y. Pan
Design, Fabrication, and Characterization of an Indigenously Fabricated Prototype Transferred Arc Plasma Furnace . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. K. Mandal, R. K. Dishwar, and O. P. Sinha
A Novel Combustion Platform for Microwave Plasma-Assisted Combustion Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. A. Fuh and C. Wang

Plasma Diagnostics
Experimental Investigation of Ar Inductively Coupled Plasma in a Closed Low-Pressure Chamber . . . . . . . . Z. Song, H. Xu, X. Wei, and Z. Chen

Pulsed Power Science and Technology
Pulsed Voltage Adder Topology Based on Inductive Blumlein Lines . . . . . . . . . . . . . . . . . . . . . . . .L. Yu, Z. Jiu, T. Sugai, A. Tokuchi, and W. Jiang

Arcs & MHD
Ionic Wind Development in Corona Discharge for LED Cooling . . . . . . . . J. Wang, Y.-X. Cai, X.-H. Li, Y.-F. Shi, Y.-C. Bao, J. Wang, and Y.-X. Shi

Space Plasmas
Indium–Tin Oxide–Coated Glass for Passive Ion Collection on Small-Scale Spacecraft . . . . . . . . . . . J. K. McTernan, A. C. Small, and S. G. Bilén

Dusty Plasmas
The Study on Dispersion Characteristic of Dusty Plasma . . . . . . . . . . . . . . . . . . . . . . . . . Y.-Y. Chen, R.-J. Yu, J.-H. Li, Z.-L. Cao, and Y.-Y. Zhang

Electromagnetic Launch Science and Technology
Dynamics Response of Filament-Wound Composite Barrel for Rail Gun With Acceleration Load . . . . . . . . . . . . . . . . . . . D. Yin, H. Xiao, and B. Li

Special Issue on Dusty Plasmas 2017
Resonant Energy Transfer Between Degrees of Freedom in a Dusty Plasma System . . . . . . . . . . . . . . . . . . . V. P. Semyonov and A. V. Timofeev


Special Issue for Selected Papers from EAPPC/BEAMS/MEGAGAUSS 2016
Simulation of Helical Flux Compression Generator . . . . . . . . . . . . . . . . . . S. V. Anischenko, P. T. Bogdanovich, A. A. Gurinovich, and A. V. Oskin


ANNOUNCEMENTS
Call for Papers—Special Issue for Selected Papers from EAPPC/BEAMS 2018
Call for Papers—The 15th Workshop on the Physics of Dusty Plasmas
Call for Papers—Special Issue on Plasma-Assisted Technologies
Call for Papers—Special Issue for Plenary, Invited and Selected Papers from the 2018 Asia-Pacific Conference on Plasma and Terahertz Science
Call for Papers—Special Issue on Spacecraft Charging Technology-2018


Accessibility | Privacy and Opting Out of Cookies | Nondiscrimination Policy

Copyright 2018 IEEE - All rights reserved. Use of this newsletter site signifies your agreement to the IEEE Terms and Conditions.
A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. [Response: Read Receipt]

If you would like to be removed from this email distribution, please [Response: Unsubscribe from List].
If you have unsubscribed in error, please [Response: Subscribe to List].
To unsubscribe from all mailings, use your IEEE Account to update your "Personal Profile and Communication Preferences."

Replies to this message will not reach IEEE. Due to local email service/provider settings, random characters may appear in some instances.

Although the IEEE is pleased to offer the privilege of membership to individuals and groups in the OFAC embargoed countries, the IEEE cannot offer certain services to members from such countries.

IEEE
445 Hoes Lane
Piscataway, NJ 08854 USA
+1 800 678 4333 (toll free, US & Canada)
+1 732 981 0060 (Worldwide)

For more information or questions regarding your IEEE Membership or IEEE Account, please direct your inquiries to the IEEE Contact Center.