T-PS Header
T-NS Home  |   Editorial Board  |   T-NS in IEEE Xplore  |    Early Access  |   Manuscript Submission
JANUARY 2018 FEATURE ARTICLES - THESE ARE OPEN ACCESS FOR A LIMITED TIME

Effects of Heavy-Ion Irradiation on Vertical 3-D NAND Flash Memories

by M. Bagatin, S. Gerardin, A. Paccagnella, S. Beltrami, E. Camerlenghi, M. Bertuccio, A. Costantino, A. Zadeh, V. Ferlet-Cavrois, G. Santin, and E. Daly


The effects of heavy-ion irradiation on 3-D NAND flash memory cells are investigated. Threshold voltage distributions are studied before and after exposure, as a function of the linear energy transfer, fluence, and irradiation angle. Shifts are smaller in 3-D devices than those in planar ones, for the same equivalent bit density. The cell circular shape and the fact that the tunnel oxide and interpoly dielectric blocking layers are perpendicular to the semiconductor substrate make it possible to gain insight into the underlying upset mechanism, which cannot be obtained with planar devices. Evidence that energy deposition in the blocking oxide layer can contribute to charge loss from the floating gate is presented. more...
 
-----------------------

Influence of LDD Spacers and H+ Transport on the Total-Ionizing-Dose Response of 65-nm MOSFETs Irradiated to Ultrahigh Dose

by Federico Faccio, Giulio Borghello, Edoardo Lerario, Daniel M. Fleetwood, Ronald D. Schrimpf, Huiqi Gong, En Xia Zhang, P. Wang, Stefano Michelis, Simone Gerardin, Alessandro Paccagnella, and Stefano Bonaldo


The degradation induced by ultrahigh total ionizing dose in 65-nm MOS transistors is strongly gate-length dependent. The current drive decreases during irradiation, and the threshold voltage often shifts significantly during irradiation and/or high-temperature annealing, depending on transistor polarity, applied field, and irradiation/annealing temperature. Ionization in the spacer oxide and overlying silicon nitride layers above the lightly doped drain extensions leads to charge buildup as well as the ionization and/or release of hydrogen. Charge trapped in the spacer oxide or at its interface modifies the parasitic series resistance, reducing the drive current. The released hydrogen transports as H+ with an activation energy of ~0.92 eV. If the direction of the electric field is suitable, the H+ can reach the gate oxide interface and depassivate Si-H bonds, leading to threshold voltage shifts. Newly created interface traps are most prominent near the source or drain. The resulting transistor responses and defect-energy distributions often vary strongly in space and energy as a result, as demonstrated through current-voltage, charge-pumping, and low-frequency noise measurements. more...
 
-----------------------

Total Ionizing Dose Radiation-Induced Dark Current Random Telegraph Signal in Pinned Photodiode CMOS Image Sensors

by Clémentine Durnez, Vincent Goiffon, Cédric Virmontois, Serena Rizzolo, Alexandre Le Roch, Pierre Magnan, Philippe Paillet, Claude Marcandella, and Laurent Rubaldo


In this paper, several studies on total ionizing dose effects on pinned photodiode CMOS images sensors are presented. More precisely, the evolution of a parasitic signal called random telegraph signal (RTS) is analyzed through several photodiode designs. It is shown that the population of pixels exhibiting this fluctuation depends on the design variants. This population also increases in a different way with the dose: the effects are not the same considering a low or high X-rays irradiation. Moreover, a statistical analysis is realized in order to better characterize the defects responsible for RTS. It turns out that an electric-field enhancement signature can appear in some specific cases. more...
 
-----------------------

A PUBLICATION OF THE IEEE NUCLEAR AND PLASMA SCIENCES SOCIETY

JANUARY 2018   |  VOLUME 65  |  NUMBER 1  |  IETNAE  |  (SSN 0018-9499)
NUCLEAR AND SPACE RADIATION EFFECTS CONFERENCE (NSREC)
New Orleans, LA, USA, July 17–21, 2017

EDITORIAL
Conference Comments by the General Chair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. Ferlet-Cavrois
Special NSREC 2017 Issue of the IEEE TRANSACTIONS ON NUCLEAR SCIENCE Comments by the Editors . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Fleetwood, D. Brown, S. Girard, S. Gerardin, I. S. Esqueda, W. Robinson, and S. Moss


LIST OF REVIEWERS
NSREC 2017 Special Issue of the IEEE TRANSACTIONS ON NUCLEAR SCIENCE List of Reviewers


AWARDS
2017 IEEE Nuclear and Space Radiation Effects Conference Awards Comments by the Chairman . . . . . . . . . . . . . . . . . . . . . . . . . . . . J.-L. Leray
Outstanding Conference Paper Award: 2017 IEEE Nuclear and Space Radiation Effects Conference


IN MEMORIAM
Leslie J. Palkuti

RADIATION EFFECTS IN DEVICES AND INTEGRATED CIRCUITS
Heavy Ion and Proton-Induced Single Event Upset Characteristics of a 3-D NAND Flash Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Chen, E. Wilcox, R. L. Ladbury, C. Seidleck, H. Kim, A. Phan, and K. A. LaBel
Electron Irradiation of Samsung 8-Gb NAND Flash Memory . . . . . . . . . . . . . . . . . F. Irom, L. D. Edmonds, G. R. Allen, W. Kim, and S. Vartanian
Proton-Induced Displacement Damage and Total-Ionizing-Dose Effects on Silicon-Based MEMS Resonators . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Gong, W. Liao, E. X. Zhang, A. L. Sternberg, M. W. McCurdy, J. L. Davidson,
     R. A. Reed,   D. M. Fleetwood,   R. D. Schrimpf,   P. D. Shuvra,   J.-T. Lin,   S. McNamara,   K. M. Walsh,   B. W. Alphenaar,  and  M. L. Alles

Investigations on the Geometry Effects and Bias Configuration on the TID Response of nMOS SOI Tri-Gate Nanowire Field-Effect
     Transistors
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Riffaud, M. Gaillardin,
     C. Marcandella,  M. Martinez,  P. Paillet,  O. Duhamel,  T. Lagutere,  M. Raine,  N. Richard,  F. Andrieu,  S. Barraud,  M. Vinet, and O. Faynot

Total-Ionizing-Dose Responses of GaN-Based HEMTs With Different Channel Thicknesses and MOSHEMTs With Epitaxial MgCaO as Gate
      Dielectric
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. A. Bhuiyan, H. Zhou, S.-J. Chang, X. Lou,
      X. Gong, R. Jiang, H. Gong, E. X. Zhang, C.-H. Won, J.-W. Lim, J.-H. Lee, R. G. Gordon, R. A. Reed, D. M. Fleetwood, P. Ye, and  T.-P. Ma

TID Effects in Reconfigurable MOSFETs Using 2-D Semiconductor WSe2 . . . . P. Dhakras, P. Agnihotri, H. Bakhru, H. L. Hughes, and J. U. Lee
Dose-Rate Effects on the Total-Ionizing-Dose Response of Piezoresistive Micromachined Cantilevers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. N. Arutt, W. Liao, H. Gong, P. D. Shuvra, J.-T. Lin, M. L. Alles,
      B. W. Alphenaar, J. L. Davidson, K. M. Walsh, S. McNamara, E. X. Zhang, A. L. Sternberg, D. M. Fleetwood, R. A. Reed, and R. D. Schrimpf

Investigation of TID and Dynamic Burn-In-Induced VT Shift on RTG4 Flash-Based FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . N. Rezzak, J.-J. Wang, M. Traas A. Zerrouki, G. Bakker, F. Xue, A. Cai, F. Hawley, J. McCollum, and E. Hamdy
Atypical Effect of Displacement Damage on LM124 Bipolar Integrated Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Borel, F. Roig, A. Michez, B. Azais, S. Danzeca, N. J.-H. Roche, F. Bezerra, P. Calvel, and L. Dusseau
Total-Ionizing-Dose Response of Nb2O5-Based MIM Diodes for Neuromorphic Computing Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     R. Jiang, E. X. Zhang, S. E. Zhao, D. M. Fleetwood, R. D. Schrimpf, R. A. Reed, M. L. Alles, J. C. Shank, M. B. Tellekamp, and W. A. Doolittle

RADIATION EFFECTS IN DEVICES AND INTEGRATED CIRCUITS
Total-Ionizing Dose Effects on Charge Transfer Efficiency and Image Lag in Pinned Photodiode CMOS Image Sensors . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Rizzolo, V. Goiffon, M. Estribeau, P. Paillet, C. Marcandella, C. Durnez, and P. Magnan
Total Ionizing Dose Radiation-Induced Dark Current Random Telegraph Signal in Pinned Photodiode CMOS Image Sensors . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . C. Durnez, V. Goiffon, C. Virmontois, S. Rizzolo, A. Le Roch, P. Magnan, P. Paillet, C. Marcandella, and L. Rubaldo
Total Ionizing Dose Effects on a Radiation-Hardened CMOS Image Sensor Demonstrator for ITER Remote Handling . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . .V. Goiffon, S. Rizzolo, F. Corbière, S. Rolando, S. Bounasser, M. Sergent, A. Chabane, O. Marcelot, M. Estribeau,
     P. Magnan,  P. Paillet,  S. Girard,  M. Gaillardin,  C. Marcandella,  T. Allanche,  M. Van Uffelen,   L. M. Casellas,   R. Scott,   and   W. De Cock

Steady-State Radiation-Induced Effects on the Performances of BOTDA and BOTDR Optical Fiber Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . .A. Morana, I. Planes, S. Girard, C. Cangialosi, S. Delepine-Lesoille, E. Marin, A. Boukenter, and Y. Ouerdane
Single-Event Transients in Readout Circuitries at Low Temperature Down to 50 K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Al Youssef, L. Artola, S. Ducret, G. Hubert, R. Buiron, C. Poivey, F. Perrier, and S. Parola
Radiation-Induced Attenuation in Single-Mode Phosphosilicate Optical Fibers for Radiation Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . D. Di Francesca, G. Li Vecchi, S. Girard, A. Alessi, I. Reghioua, A. Boukenter, Y. Ouerdane, Y. Kadi, and M. Brugger
Vulnerability and Hardening Studies of Optical and Illumination Systems at MGy Dose Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Allanche, P. Paillet, V. Goiffon, C. Muller, M. Van Uffelen, L. Mont-Casellas, O. Duhamel,
      C. Marcandella, S. Rizzolo, P. Magnan, R. Clerc, T. Lépine,  M. Hébert,  A. Boukenter,  Y. Ouerdane, R. Scott,   W. De Cock,   and   S. Girard

Potential Limitations on Integrated Silicon Photonic Waveguides Operating in a Heavy Ion Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. S. Goley, Z. E. Fleetwood, and J. D. Cressler

BASIC MECHANISMS OF RADIATION EFFECTS
Coverglass Radiation-Induced Multijunction Solar Cell Current-Limiting Effects . . . . . . . . . . . . . . . . . . . . . . . . . S. R. Messenger and M. A. Kruer
Radiation-Induced Charge Trapping and Low-Frequency Noise of Graphene Transistors . . . . . . . . . . . . . . . . . . . . P. Wang, C. Perini, A. O’Hara,
      B. R. Tuttle, E. X. Zhang, H. Gong, L. Dong, C. Liang, R. Jiang, W. Liao, D. M. Fleetwood, R. D. Schrimpf, E. M. Vogel, and S. T. Pantelides

Influence of LDD Spacers and H+ Transport on the Total-Ionizing-Dose Response of 65-nm MOSFETs Irradiated to Ultrahigh Doses . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F. Faccio, G. Borghello,
     E. Lerario,  D. M. Fleetwood,  R. D. Schrimpf,  H. Gong,  E. X. Zhang,  P. Wang,  S. Michelis,  S. Gerardin, A. Paccagnella,  and  S. Bonaldo

Capacitance–Frequency Estimates of Border-Trap Densities in Multifin MOS Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . S. E. Zhao, R. Jiang,
      E. X. Zhang, W. Liao, C. Liang, D. M. Fleetwood, R. D. Schrimpf, R. A. Reed, D. Linten, J. Mitard, N. Collaert,  S. Sioncke,  and  N. Waldron

Understanding the Implications of a LINAC’s Microstructure on Devices and Photocurrent Models . . . . . . . . . . . . . . . . . . . . . . . . . . M. L. McLain,
      J. K. McDonald,     C. E. Hembree,     T. J. Sheridan,     T. A. Weingartner,     P. E. Dodd,    M. R. Shaneyfelt,   F. Hartman,   and   D. A. Black

In Situ Synaptic Programming of CBRAM in an Ionizing Radiation Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. L. Taggart, W. Chen, Y. Gonzalez-Velo, H. J. Barnaby, K. Holbert, and M. N. Kozicki
Total Ionization Dose Effects on Charge-Trapping Memory With Al2O3/HfO2/Al2O3 Trilayer Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. S. Bi, Y. N. Xu, G. B. Xu, H. B. Wang, L. Chen, and M. Liu
Stochastic Gain Degradation in III–V Heterojunction Bipolar Transistors Due to Single Particle Displacement Damage . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Vizkelethy, E. S. Bielejec, and B. A. Aguirre

SINGLE-EVENT EFFECTS: DEVICES AND INTEGRATED CIRCUITS
Multiple-Cell Upsets Induced by Single High-Energy Electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. J. Gadlage, A. H. Roach, A. R. Duncan, A. M. Williams, D. P. Bossev, and M. J. Kay
Single-Event Latch-Up: Increased Sensitivity From Planar to FinFET . . . . . . . . . . . . . . . J. Karp, M. J. Hart, P. Maillard, G. Hellings, and D. Linten
Angular Effects on Single-Event Mechanisms in Bulk FinFET Technologies . . . P. Nsengiyumva, L. W. Massengill, J. S. Kauppila,  J. A. Maharrey,
     R. C. Harrington,    T. D. Haeffner,    D. R. Ball,    M. L. Alles,    B. L. Bhuva,   W. T. Holman,   E. X. Zhang,   J. D. Rowe   and   A. L. Sternberg

Single-Event Upset Mitigation in a Complementary SiGe HBT BiCMOS Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . .N. E. Lourenco, A. Ildefonso, G. N. Tzintzarov, Z. E. Fleetwood, K. Motoki, P. Paki, M. Kaynak, and J. D. Cressler
Utilizing SiGe HBT Power Detectors for Sensing Single-Event Transients in RF Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Ildefonso,
      C. T. Coen,  Z. E. Fleetwood,  G. N. Tzintzarov,  M. T. Wachter,  A. Khachatrian,  D. McMorrow,   J. H. Warner,   P. Paki,   and   J. D. Cressler

Transmission Line Pulse Test Method for Estimating SEB Performance of n-Channel Lateral DMOS Power Transistors . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Hamlyn, P. L. Hower, K. Warren, and R. C. Baumann
Single-Event Burnout of SiC Junction Barrier Schottky Diode High-Voltage Power Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. F. Witulski,
      R. Arslanbekov,  A. Raman,  R. D. Schrimpf,   A. L. Sternberg,   K. F. Galloway,  A. Javanainen,  D. Grider,  D. J. Lichtenwalner,  and  B. Hull

Analysis of Single-Event Effects in DDR3 and DDR3L SDRAMs Using Laser Testing and Monte-Carlo Simulations . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. Kohler, V. Pouget, F. Wrobel, F. Saigné, P. X. Wang, and M.-C. Vassal
Failure Analysis of Heavy Ion-Irradiated Schottky Diodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . M. C. Casey, J.-M. Lauenstein, R. J. Weachock, E. P. Wilcox, L. M. Hua, M. J. Campola, A. D. Topper, R. L. Ladbury, and K. A. LaBel
Dynamic SEU Sensitivity of Designs on Two 28-nm SRAM-Based FPGA Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. M. Keller, T. A. Whiting, K. B. Sawyer, and M. J. Wirthlin
On the Reliability of Linear Regression and Pattern Recognition Feedforward Artificial Neural Networks in FPGAs . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F. Libano, P. Rech, L. Tambara, J. Tonfat, and F. Kastensmidt
Scaling Effects on Single-Event Transients in InGaAs FinFETs . . . . . . . . .. H. Gong, K. Ni, E. X. Zhang, A. L. Sternberg, J. A. Kozub, K. L. Ryder,
      R. F. Keller, L. D. Ryder, S. M. Weiss, R. A. Weller, M. L. Alles,  R. A. Reed,  D. M. Fleetwood,  R. D. Schrimpf,  A. Vardi,  and J. A. del Alamo

An Empirical Model for Predicting SE Cross Section for Combinational Logic Circuits in Advanced Technologies . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Jiang, H. Zhang, J. S. Kauppila, L. W. Massengill, and B. L. Bhuva
Time-Domain Modeling of All-Digital PLLs to Single-Event Upset Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     Y. P. Chen, L. W. Massengill, A. L. Sternberg, E. X. Zhang, J. S. Kauppila, M. Yao, A. L. Amort, B. L. Bhuva, W. T. Holman, and T. D. Loveless

SINGLE-EVENT EFFECTS: MECHANISMS AND MODELING
Effects of Heavy-Ion Irradiation on Vertical 3-D NAND Flash Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Bagatin,
      S. Gerardin, A. Paccagnella, S. Beltrami, E. Camerlenghi,  M. Bertuccio, A. Costantino, A. Zadeh, V. Ferlet-Cavrois, G. Santin,  and  E. Daly

The Impact of Charge Collection Volume and Parasitic Capacitance on SEUs in SOI- and Bulk-FinFET D Flip-Flops . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. R. Ball, M. L. Alles, J. S. Kauppila, R. C. Harrington,
      J. A. Maharrey,    P. Nsengiyumva,    T. D. Haeffner,    J. D. Rowe,    A. L. Sternberg,    E. X. Zhang,    B. L. Bhuva,    and    L. W. Massengill

Accurate Resolution of Time-Dependent and Circuit-Coupled Charge Transport Equations: 1-D Case Applied to 28-nm FD-SOI Devices . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. Malherbe, G. Gasiot, T. Thery, J.-L. Autran, and P. Roche
Estimation of the Single-Event Upset Sensitivity of Advanced SOI SRAMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Raine, M. Gaillardin, T. Lagutere, O. Duhamel, and P. Paillet
Laser Visualization of the Development of Long Line-Type Mutli-Cell Upsets in Back-Biased SOI SRAMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Itsuji, D. Kobayashi, O. Kawasaki, D. Matsuura, T. Narita, M. Kato, S. Ishii, K. Masukawa, and K. Hirose

SINGLE-EVENT EFFECTS: TRANSIENT CHARACTERIZATION
DAMSEL—Dynamic and Applicative Measurement of Single Events in Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Glorieux, A. Evans, D. Alexandrescu, C. Boatella-Polo, K. Sanchez, and V. Ferlet-Cavrois
Impact of Single-Event Transient Duration and Electrical Delay at Reduced Supply Voltages on SET Mitigation Techniques . . . . . J. A. Maharrey,
      J. S. Kauppila, R. C. Harrington, P. Nsengiyumva, D. R. Ball, T. D. Haeffner,  E. X. Zhang,  B. L. Bhuva,  W. T. Holman,  and L. W. Massengill

Correlation of the Spatial Variation of Single-Event Transient Sensitivity With Thermoreflectance Thermography in AlxGa1−xN/GaN HEMTs . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Khachatrian,
      N. J.-H. Roche,  L. B. Ruppalt,  J. G. Champlain,  S. Buchner,  A. D. Koehler,  T. J. Anderson,  K. D. Hobart,  J. H. Warner, and D. McMorrow

On-Chip Relative Single-Event Transient/Single-Event Upset Susceptibility Test Circuit for Integrated Circuits Working in Real Time . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. Hao, S. Chen, Z. Wu, and Y. Chi
Evidence of Pulse Quenching in AND and OR Gates by Experimental Probing of Full Single-Event Transient Waveforms . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Mitrović, M. Hofbauer, K. Schneider-Hornstein, B. Goll, K.-O. Voss, and H. Zimmermann

RADIATION HARDENING BY DESIGN
p-n-p-Based RF Switches for the Mitigation of Single-Event Transients in a Complementary SiGe BiCMOS Platform . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . I. Song, M.-K. Cho, Z. E. Fleetwood, Y. Gong, S. Pavlidis, S. P. Buchner, D. McMorrow, P. Paki, M. Kaynak, and J. D. Cressler
SiGe HBT Profiles With Enhanced Inverse-Mode Operation and Their Impact on Single-Event Transients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . Z. E. Fleetwood, A. Ildefonso, G. N. Tzintzarov, B. Wier, U. Raghunathan, M.-K. Cho, I. Song, M. T. Wachter,
      D. Nergui, A. Khachatrian, J. H. Warner, P. McMarr, H. Hughes, E. Zhang, D. McMorrow,  P. Paki,  A. Joseph,   V. Jain,   and   J. D. Cressler

A 2.56-GHz SEU Radiation Hard LC-Tank VCO for High-Speed Communication Links in 65-nm CMOS Technology . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Prinzie, J. Christiansen, P. Moreira, M. Steyaert, and P. Leroux
Frequency Dependence of Heavy-Ion-Induced Single-Event Responses of Flip-Flops in a 16-nm Bulk FinFET Technology . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Zhang, H. Jiang, B. L. Bhuva, J. S. Kauppila, W. T. Holman, and L. W. Massengill
nMOS Transistor Location Adjustment for N-Hit Single-Event Transient Mitigation in 65-nm CMOS Bulk Technology . . . . . . Z. Wu and S. Chen
An Electrostatic Discharge Protection Circuit Technique for the Mitigation of Single-Event Transients in SiGe BiCMOS Technology . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . M.-K. Cho, I. Song, S. Pavlidis, Z. E. Fleetwood, S. P. Buchner, D. McMorrow, P. Paki, and J. D. Cressler

SPACE AND TERRESTRIAL RADIATION ENVIRONMENTS
Extreme Atmospheric Radiation Environments and Single Event Effects . . . . . . . . . . . . . . . . . . . . . . . . C. Dyer, A. Hands, K. Ryden, and F. Lei
The Compact Environmental Anomaly Sensor Risk Reduction: A Pathfinder for Operational Energetic Charged Particle Sensors . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. D. Lindstrom, J. Aarestad, J. O. Ballenthin, D. A. Barton, J. M. Coombs, J. Ignazio,
      W. R. Johnston,  S. Kratochvil,  J. Love,  D. McIntire,  S. Quigley,  P. Roddy,  R. S. Selesnick, M . Sibley,  A. Vera,  A. Wheelock, and S. Wu

LHC and HL-LHC: Present and Future Radiation Environment in the High-Luminosity Collision Points and RHA Implications . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. García Alía, M. Brugger, F. Cerutti,
      S. Danzeca,  A. Ferrari,  S. Gilardoni,  Y. Kadi,  M. Kastriotou,  A. Lechner, C. Martinella, O. Stein, Y. Thurel, A. Tsinganis, and S. Uznanski

Incorporating Radiation Effects Into AE9/AP9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. P. O’Brien and B. P. Kwan
Changes in AE9/AP9-IRENE Version 1.5 . . . . . . . . T. P. O’Brien, W. R. Johnston, S. L. Huston, C. J. Roth, T. B. Guild, Y.-J. Su, and R. A. Quinn

DOSIMETRY
Thin Silicon Microdosimeter Utilizing 3-D MEMS Fabrication Technology: Charge Collection Study and Its Application in Mixed
      Radiation Fields
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. T. Tran, L. Chartier, D. A. Prokopovich, D. Bolst, M. Povoli, A. Summanwar,
      A. Kok,  A. Pogossov,  M. Petasecca,  S. Guatelli, M. I. Reinhard, M. Lerch,  M. Nancarrow,  N. Matsufuji,  M. Jackson,  and  A. B. Rosenfeld

Total-Ionizing-Dose Effects on a Graphene X-Ray Detector Laser-Scribed From Graphene Oxide . . . . . . . . . . . . . . N.-Q. Deng, W.-J. Liao, J. Hu,
      P. Wang, M.-X. Xu, H.-N. Zhang, P. Wang, C.-D. Liang, H. Tian, L. Chen, X.-P. Ouyang, Y. Yang, T.-L. Ren, E. X. Zhang, and D. M. Fleetwood

RADIATION HARDNESS ASSURANCE
Application of a Focused, Pulsed X-ray Beam for Total Ionizing Dose Testing of Bipolar Linear Integrated Circuits . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. D. LaLumondiere, E. C. Dillingham, A. C. Scofield,
      J. P. Bonsall,    P. Karuza,    D. L. Brewe,   R. D. Schrimpf,   A. L. Sternberg,   N. P. Wells,  D. M. Cardoza,   W. T. Lotshaw,  and  S. C. Moss

Exploiting Parallelism and Heterogeneity in a Radiation Effects Test Vehicle for Efficient Single-Event Characterization of Nanoscale
      Circuits
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. S. Kauppila,
      J. A. Maharrey, R. C. Harrington, T. D. Haeffner, P. Nsengiyumva, D. R. Ball, A. L. Sternberg, E. X. Zhang, B. L. Bhuva, and L. W. Massengill

Correlation of a Bipolar-Transistor-Based Neutron Displacement Damage Sensor Methodology With Proton Irradiations . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. M. Tonigan, C. N. Arutt, E. J. Parma, P. J. Griffin, D. M. Fleetwood, and R. D. Schrimpf
Analysis of TPA Pulsed-Laser-Induced Single-Event Latchup Sensitive-Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . P. Wang, A. L. Sternberg, J. A. Kozub, E. X. Zhang, N. A. Dodds, S. L. Jordan, D. M. Fleetwood, R. A. Reed, and R. D. Schrimpf


Conference Author Index

PART II OF TWO PARTS


REGULAR PAPERS
ACCELERATOR TECHNOLOGY
Fully Digital and White Rabbit-Synchronized Low-Level RF System for LIPAc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. de la Morena,
      M. Weber,   D. Regidor,   P. Méndez,   I. Kirpitchev,   J. Mollá,   A. Ibarra,   M. Méndez,   B. Rat,   J. G. Ramírez,  R. Rodríguez,  and  J. Díaz

RADIATION EFFECTS
Heavy-Ion Soft Errors in Back-Biased Thin-BOX SOI SRAMs: Hundredfold Sensitivity Due to Line-Type Multicell Upsets. . . . . . . . . D. Kobayashi,
      K. Hirose,    T. Ito,   Y. Kakehashi,   O. Kawasaki,   T. Makino,   T. Ohshima,   D. Matsuura,   T. Narita,   M. Kato,   S. Ishii,  and  K. Masukawa

Irradiation Testing of Piezoelectric (Aluminum Nitride, Zinc Oxide, and Bismuth Titanate) and Magnetostrictive Sensors (Remendur
     and Galfenol)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Reinhardt, J. Daw, and B. R. Tittmann
A Technique for Characterizing Ionization and Displacement Defects in NPN Transistors Induced by 1-MeV Electron Irradiation. . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Li, J. Yang, and C. Liu
Microbeam Heavy-Ion Single-Event Effect on Xilinx 28-nm System on Chip. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. Yang, X. Du, C. He, S. Shi, L. Cai, N. Hui, G. Guo, and C. Huang
Ionizing Radiation Effects on the Noise of 65 nm CMOS Transistors for Pixel Sensor Readout at Extreme Total Dose Levels. . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. Re, L. Gaioni, M. Manghisoni, L. Ratti, E. Riceputi, and G. Traversi
D–T Neutron and 60Co-Gamma Irradiation Effects on HPSI 4H-SiC Photoconductors. . . . . . . . . . . . . . . . . . . . . . P. V. Raja and N. V. L. N. Murty
A Radiation-Hardened and ESD-Optimized Wireline Driver With Wide Terminal Common-Mode Voltage Range. . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Xiang, X. Gao, F. Liu, M. Li, S. Huang, X. Chen, X. Zhou, S. Hu, Z. Lin, A. Bermak, and F. Tang
Electrical Transport Degradation of Chemically Doped Electronic-Type-Separated Single-Wall Carbon Nanotubes From Radiation-Induced
     Defects
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. Puchades, J. E. Rossi, N. D. Cox, A. R. Bucossi, K. J. Soule, C. D. Cress, and B. J. Landi
Proton Irradiation Effects on AlGaN/GaN HEMTs With Different Isolation Methods. . . . . . . . . . . . . . . . D.-S. Kim, J.-H. Lee, S. Yeo, and J.-H. Lee
TID Effects on a Data Acquisition System With Design Diversity Redundancy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. J. González, R. G. Vaz, M. B. Oliveira, V. W. Leorato, O. L. Gonçalez, and T. R. Balen

RADIATION INSTRUMENTATION
Development of a Novel Single-Channel, 24 cm2, SiPM-Based, Cryogenic Photodetector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . M. D’Incecco, C. Galbiati, G. K. Giovanetti, G. Korga, X. Li, A. Mandarano, A. Razeto, D. Sablone, and C. Savarese
Performance of Pad Front-End Board for Small-Strip Thin Gap Chamber With Cosmic Ray Muons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F. Li, S. Liu, K. Hu, X. Wang, H. Lu, X. Wang, H. Yang, T. Geng, P. Miao, and G. Jin
Study of the Performance of an Optically Readout Triple-GEM. . . . . . . . . M . Marafini, V. Patera, D. Pinci, A. Sarti, A. Sciubba, and N. M. Torchia
A High-Performance CLYC(Ce)-PVT Composite for Neutron and Gamma Detection. . . . . . . . . . . . . . S. Lam, J. Fiala, M. Hackett, and S. Motakef
Intrinsic Resolution of Compton Electrons in CeBr3 Scintillator Using Compact CCT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. Ranga, S. Rawat, S. Sharma, M. Prasad, S. Panwar, Kalyani, M. Dhibar, and A. K. Gourishetty
A Practical Truncation Correction Method for Digital Breast Tomosynthesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Wu, Z. Chen, J. Ma, G. Qin, B. Li, H. Qi, L. Zhou, and Y. Xu
A Study of the Fast Neutron Response of a Single-Crystal Diamond Detector at High Temperatures. . . . . . . . . . . . . . . . . A. Kumar and A. Topkar
Dynamic Compression of the Signal in a Charge Sensitive Amplifier: Experimental Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Manghisoni, D. Comotti, L. Gaioni, L. Ratti, and V. Re
High-Resolution Gamma-Ray Spectroscopy With a SiPM-Based Detection Module for 1” and 2” LaBr3:Ce Readout. . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Cozzi, P. Busca,
      M. Carminati, C. Fiorini, G. L. Montagnani, F. Acerbi, A. Gola, G. Paternoster, C. Piemonte, V. Regazzoni, N. Blasi, F. Camera, and B. Million

Fixed-Latency Gigabit Serial Links in a Xilinx FPGA for the Upgrade of the Muon Spectrometer at the ATLAS Experiment. . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Wang, X. Hu, R. Pinkham, S. Hou, T. Schwarz, J. Zhu, J. W. Chapman, and B. Zhou

Accessibility | Privacy and Opting Out of Cookies | Nondiscrimination Policy

Copyright 2018 IEEE - All rights reserved. Use of this newsletter site signifies your agreement to the IEEE Terms and Conditions.
A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. [Response: Read Receipt]

If you would like to be removed from this email distribution, please [Response: Unsubscribe from List].
If you have unsubscribed in error, please [Response: Subscribe to List].
To unsubscribe from all mailings, use your IEEE Account to update your "Personal Profile and Communication Preferences."

Replies to this message will not reach IEEE. Due to local email service/provider settings, random characters may appear in some instances.

Although the IEEE is pleased to offer the privilege of membership to individuals and groups in the OFAC embargoed countries, the IEEE cannot offer certain services to members from such countries.

IEEE
445 Hoes Lane
Piscataway, NJ 08854 USA
+1 800 678 4333 (toll free, US & Canada)
+1 732 981 0060 (Worldwide)

For more information or questions regarding your IEEE Membership or IEEE Account, please direct your inquiries to the IEEE Contact Center.