T-NPS Header
T-PS Home  |  Editorial Board  |  T-PS in IEEE Xplore  |   Early Access  |  Manuscript Submission
FEATURED STORIES - DECEMBER 2017

Study of the Influence of Time-Varying Plasma Sheath on Radar Echo Signal

by Xu-Yang Chen, Ke-Xin Li, Yan-Yan Liu, Ya-Gang Zhou, Xiao-Ping Li, and Yan-Ming Liu
article one image
The time-varying plasma sheath surrounding a reentry spacecraft (or object) can influence the radar detection of the spacecraft seriously, causing detection error or even track loss. To study the influence of plasma sheath on radar detection, a time-varying plasma sheath model based on scattering matrix method is constructed. In the model, the surface media of reentry object is considered, together with some algorithm adjustments to avoid computational singularity, and the time-varying characteristics of plasma sheath are taken into account based on available measured data. By the model, the reflection coefficient of plasma sheath and the radar echo reflected by plasma-covered object are both calculated. And then a processing method of time-varying echo signal based on ambiguity function are put forward, by which the time delay and Doppler frequency of echo signal are analyzed. In the simulation, the rules of a series of time-varying parameters of plasma affecting the reflection coefficient are analyzed. Then, by ambiguity function analysis, the influence rules of plasma sheath on radar echo are revealed, accompanied by some qualitative and quantitative results. The proposed model, method, and simulation results are thought to be helpful for the radar detection of plasma-covered reentry objects. more...
-----------------------

Laser-Driven Plasma Accelerators Operating in the Self-Guided, Blowout Regime

by Chan Joshi
article one image
In this paper, some recent developments in the area of laser-driven plasma wakefield accelerators are reviewed. In particular, we discuss the acceleration of electrons by laser-induced plasma wakes in the so-called blowout regime. In this regime, the laser pulse is sufficiently intense to completely blowout all the plasma electrons and create a cavity or a bubble comprising plasma ions. The plasma electrons are attracted back toward the axis of propagation and form a thin sheath around the ions. The transverse and longitudinal electric fields of this cavity have desirable characteristics for accelerating a high-quality electron beam. In this blowout regime, the laser pulse can be self-guided by the wake it creates over tens of Rayleigh lengths until it is fully pump depleted. The mechanisms for producing such nonlinear wakes in plasmas, injecting electrons into the wakes so that they can be accelerated, competing instabilities that can adversely affect the beam quality, and recent experimental progress are discussed. more...
-----------------------
NPSS Logo
header

A PUBLICATION OF THE IEEE NUCLEAR AND PLASMA SCIENCES SOCIETY

DECEMBER 2017   |  VOLUME 45  |  NUMBER 12  |  ITPSBD  |  (ISSN 0093-3813)

SPECIAL ISSUE ON PLASMA-ASSISTED TECHNOLOGIES - 2017


In Memoriam
Dr. Louis A. Rosocha (February 7, 1950–October 17, 2017)


Guest Editorial
Special Issue on Plasma-Assisted Technologies - 2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. B. Matveev and T. Ombrello


SPECIAL ISSUE PAPERS
Determination of Energy of a Pulsed Dielectric Barrier Discharge and Method for Increasing Its Efficiency . . . . . . I. V. Bozhko and Y. V. Serdyuk
Dielectric Barrier Discharge of Moist Nitrogen: A Methodology for Exclusive NO Generation . . . . . . . . . . . . . . . . . . . . . . G. R. Dey and T. N. Das
Treatment of Nematode in Soil Using Surface Barrier Discharge Ozone Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F. Mitsugi, T. Abiru, T. Ikegami, K. Ebihara, and K. Nagahama
Practical Soil Treatment in a Greenhouse Using Surface Barrier Discharge Ozone Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F. Mitsugi, K. Ebihara, N. Horibe, S. Aoqui, and K. Nagahama
Producing of Microbubbles in Dried Juice Droplets Treated With Nanosecond Spark Discharges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. P. Kozhayeva and A. E. Dubinov
Plasma as a Surfactant: A New Capillary Effect and a New Wetting Effect Induced by Nanosecond Spark Discharges . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. E. Dubinov, J. P. Kozhayeva, V. A. Lyubimtseva, and V. D. Selemir
New Combined-Cycle Gas Turbine System for Plasma-Assisted Disposal of Sewage Sludge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. B. Matveev, S. I. Serbin, and N. V. Washchilenko
Investigation of the Boron Particles Behavior in ICP/RF Plasma . . . . . . . . . . . . I. B. Matveev, S. I. Serbin, N. A. Goncharova, and M. Rosenberg
Probe Diagnostics of Plasma Parameters in a Large-Volume Glow Discharge With Coaxial Gridded Hollow Electrodes . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Yuan, A. A. Kudryavtsev, A. I. Saifutdinov, S. S. Sysoev, R. Tian, J. Yao, and Z. Zhou
Local Magnetic Control in a Large-Scale Low-Pressure Nonlocal Plasma Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Yuan, R. Tian, S. I. Eliseev, V. I. Demidov, A. A. Kudryavtsev, Q. Wang, and Z. Zhou
On Electron Attachment and Detachment Processes in Dry Air at Low and Moderate Constant Electric Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. V. Ardelyan, V. L. Bychkov, and K.V. Kosmachevskii
Mathematical Simulation of Processes in ICP/RF Plasma Torch for Plasma Chemical Reactions . . . . . . . . . . . . . . . D. V. Ivanov and S. G. Zverev

PART II OF TWO PARTS

REGULAR PAPERS
Invited Review Paper
Laser-Driven Plasma Accelerators Operating in the Self-Guided, Blowout Regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Joshi

Basic Processes in Fully and Partially Ionized Plasmas
On Omega; Mode in Radio-Frequency Atmospheric Discharges Controlled by Dielectric Barriers . . . . . . . . . . . . . . . . X.-L. Wang, Y. Liu, and Y.-T. Zhang
Optical Emission Spectroscopic Studies on Atmospheric Electrodeless Microwave Plasma in Carbon Dioxide–Hydrogen Mixture . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Sun, J. Lee, S. Im, and M. S. Bak
Experimental Study of a Long-Living Plasmoid Using High-Speed Filming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. Stelmashuk and P. Hoffer

Microwave Generation and Microwave-Plasma Interaction
Study of the Influence of Time-Varying Plasma Sheath on Radar Echo Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X.-Y. Chen, K.-X. Li, Y.-Y. Liu, Y.-G. Zhou, X.-P. Li, and Y.-M. Liu
Diffraction Field Reconstruction in Millimeter-Wave SIW Ten-Way Power Divider by Shape Optimization Technology . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F. Zhang, K. Song, and Y. Fan
Effect of Plasma on the Performance of Arrayed Antennas by Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Du, C. Li, and L. Qin
Improved Type3-PLL to Mitigate Parasitic Amplitude Modulation Effects Caused by Time-Varying Plasma Sheath . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Zhu, X. Li, L. Shi, and Y. Liu

Charged Particle Beams and Sources
Estimation of Beam and Plasma Parameters for Electron Beam Transport in Ion-Focused Regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . U. N. Pal, P. Shukla, A. S. Jadon, and N. Kumar
Picosecond Breakdown in High-Voltage Open Pulse Discharge With Enhanced Secondary Electron Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. V.Schweigert, A. L. Alexandrov, P. P. Gugin, M. A. Lavrukhin, P. A. Bokhan, and D. E. Zakrevsky

High Energy Density Plasmas and Their Interactions
Neutron Spectrum Measured by Activation Diagnostics in Deuterium Gas-Puff Experiments on the 3 MA GIT-12 Z-Pinch . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Cikhardt, D. Klir, K. Rezac, A. V. Shishlov, R. K. Cherdizov, B. Cikhardtova, G. N. Dudkin, F. I. Fursov,
      V. A. Kokshenev, J. Kravarik, P. Kubes, N. E. Kurmaev, A. Yu. Labetsky, V. N. Padalko, N. A. Ratakhin, O. Sila, K. Turek, and V. A. Varlachev


Industrial, Commercial, and Medical Applications of Plasmas
Atmospheric Pressure Planar Radio Frequency Discharge With Isolated Electrodes: Glow Features and Application Prospects . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. Y. Bazhenov, R. Y. Chaplynskyi, R. M. Kravchuk, A. I. Kuzmichev, V. V. Tsiolko, and O. V. Yaroshchuk


Pulsed Power Science and Technology
Numerical Study of Capillary Discharge With an Extended Brass Tube . . . . . . . . . . . . . . . . . . . . . . . . . H. Liu, C. Wu, F. An, S. Liao, and J. Duan
Energy Transfer Efficiency Improvement of Liquid Pulsed Current Discharge by Plasma Channel Length Regulation Method . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Y. Liu, Z. Li, X. Li, G. Zhou, H. Li, Q. Zhang, and F. Lin
Solid-State Nanosecond Pulse Generator Using Photoconductive Semiconductor Switch and Helical Pulse Forming Line . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Wang and J. Liu
Elevated Concentration of Nitrate Ions in Water Through Direct Treatment by Dielectric Barrier Discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. Plotnikov, G. Diaz, and E. Leal-Quiros
Design for Compression Improvement of a Magnetic Pulse Compressor by Using a Multiwinding Magnetic Switch . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J.-H. Rhee, Y.-M. Cho, S.-H. Kim, and K.-C. Ko
Ignitron-Based Switching Scheme for Multiple Ignitron Triggering in Pulsed Power Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Chowdhury, S. P. Nayak, A. K. Saxena M. D. Kale, and T. C. Kaushik
Resonant Converter Topology With Losses Compensation for the ISOLDE/CERN Modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. M. Redondo, H. Canacsinh, J. F. Silva, and A. Fowler
New Marx Generator Architecture With a Controllable Output Based on IGBTs . . . . . . . . . . . . . . . . . .. . . . Y. Achour, J. Starzyński, and A. Łasica
A Three-Electrode Gas Switch Triggered by Microhollow Cathode Discharge With Low Trigger Voltage . . . . . . . . . . . C. Zhang, K. Liu, and J. Qiu
Design and Implementation of a Compact 20-kHz Nanosecond Magnetic Pulse Compression Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. B. J. M. Driessen, F. J. C. M. Beckers, T. Huiskamp, and A. J. M. Pemen

Arcs & MHD
Ring-Shaped Capacitive Probes for Determination of Spatial Arc Voltage Distribution in High-Voltage Circuit Breaker Model . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Adachi, T. Sakuyama, and H. Urain

Space Plasmas
Radiation-Absorption, Geometric-Distortion, and Physical-Structure Modeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. R. Koehler
Ion-Acoustic Solitary Waves and Double Layers in a Magnetized Degenerate Quantum Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Hosen, M. G. Shah, M. R. Hossen, and A. A. Mamun

Fusion Science and Technology
Friction Factors in Fully Developed MHD Laminar Flows for Oblique Magnetic Fields and High Hartmann Numbers in
      Rectangular Channels
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. S. Kamble, D. S. Ziyad, and M. S. Kalra

Special Issue on Atmospheric Pressure Plasma Jets and Their Applications
Environmental Control of an Argon Plasma Effluent and Its Role in THP-1 Monocyte Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . S. Bekeschus, A. Schmidt, H. Jablonowski, L. Bethge, S. Hasse, K. Wende, K. Masur, T. von Woedtke, and K.-D. Weltmann

Special Issue on Electromagnetic Launchers
High-Efficiency Control Strategy of an Air-Core Pulsed Alternator Pair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Li, S. Cui, and L. Song

Special Issue on Spacecraft Charging Technology 2017
The Effects of Material at Arc Site on ESD Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. A. Young and M. W. Crofton

Special Issue -EAPPC2016
Explosive Current Opening Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V. A. Demidov


ANNOUNCEMENTS
Call for Papers—Special Issue on Selected Papers of the 16th Latin American Workshop on Plasma Physics
Call for Papers—Special Issue on Pulsed Power Science and Technology
Call for Papers—Special Issue for Selected Papers from PLASMA 2017
Call for Papers—7th Special Issue of the IEEE Transactions on Plasma Science Z-Pinch Plasmas
Call for Papers—Special Issue for Plenary and Invited Papers from the Chinese National Conference on Plasma Science and Technology


2017 INDEX


Accessibility | Privacy and Opting Out of Cookies | Nondiscrimination Policy

Copyright 2018 IEEE - All rights reserved. Use of this newsletter site signifies your agreement to the IEEE Terms and Conditions.
A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. [Response: Read Receipt]

If you would like to be removed from this email distribution, please [Response: Unsubscribe from List].
If you have unsubscribed in error, please [Response: Subscribe to List].
To unsubscribe from all mailings, use your IEEE Account to update your "Personal Profile and Communication Preferences."

Replies to this message will not reach IEEE. Due to local email service/provider settings, random characters may appear in some instances.

Although the IEEE is pleased to offer the privilege of membership to individuals and groups in the OFAC embargoed countries, the IEEE cannot offer certain services to members from such countries.

IEEE
445 Hoes Lane
Piscataway, NJ 08854 USA
+1 800 678 4333 (toll free, US & Canada)
+1 732 981 0060 (Worldwide)

For more information or questions regarding your IEEE Membership or IEEE Account, please direct your inquiries to the IEEE Contact Center.