T-NPS Header
T-PS Home  |  Editorial Board  |  T-PS in IEEE Xplore  |   Early Access  |  Manuscript Submission
We are happy to announce that T-PS has adopted a new reviewer scoresheet, which is now in place. The new reviewer questionnaire will appear for all papers going forward and will be sent to the authors via email in their decision letters. If you have not already seen the new questionnaire, please take a moment to review the changes.
FEATURED STORIES - SEPTEMBER 2015

"Revisiting Power Flow and Pulse-Shortening in a Relativistic Magnetron"

by John G. Leopold, Anatoli S. Shlapakovski, Arkady Sayapin and Yakov E. Krasik


The behavior of a six-vane relativistic magnetron with a single radial output slot has been studied in detail by 3-D particle in cell simulations. It is found that a delicate power imbalance caused by the pulsed-power generator and magnetron impedance mismatch is responsible for the shortening of the radiated power pulse. Pulse shortening can be avoided completely, and the radiated power can be considerably increased by decreasing the emitted current when it is too large to be sustainable. more...

-----------------------

"First Lasing from a High Power Cylindrical Grating Smith-Purcell Device"

by Hans P. Bluem, Robert H. Jackson, Jr., Jonathan D. Jarvis, Alan M. M. Todd, Jacques Gardelle, Patrick Modin, and John T. Donohue


Over the past year, a collaborative effort between Advanced Energy Systems and Commissariat à l'Energie Atomique/Centre d'Etudes Scientifiques et Techniques d'Aquitaine has achieved the first lasing of a cylindrical Smith-Purcell freeelectron laser (CSPFEL). These proof-of-principle experiments employed an 80-keV 45-A 200-ns full-width at half-maximum thin annular electron beam propagating just above a cylindrical grating. The interaction of the beam with the evanescent grating mode resulted in strong beam bunching and generation of highpower millimeter-wave radiation. more...

-----------------------

"Effects of optical pulse parameters on a pulsed UV-illuminated switch and their adjusting methods"

by Junna Li, Weiqing Chen, Zhiqiang Chen, Junping Tang, Wei Jia, Fan Guo, Tian Yang, Aici Qiu, Junping Zhao and Qiaogen Zhang


Ultraviolet (UV) illumination can effectively shorten the statistical lag and jitter in gas breakdown processes. The spark gap discharge can produce abundant spectrum including UV waveband. In this paper, a simple but reliable spark gap operating with N2 at atmospheric pressure is used to test optical radiation characteristics, such as spectrum intensity, rise time, fall time, and duration of optical pulse, which are adjusted by changing the circuit or configuration parameters. more...

-----------------------

"The Space Weather Threat to Situational Awareness, Communications, and Positioning Systems"

by Dale C. Ferguson, Simon Peter Worden and Daniel E. Hastings


A recent space weather headline has cast doubt in the minds of some as to whether space weather is the source of spacecraft anomalies, and thus, whether it is important in the design and operation of critical situational awareness, communications, and positioning systems. In this paper, we reiterate the evidence for the importance of space weather, its role in producing spacecraft and ground anomalies, and the threat it poses to critical systems. more...

-----------------------

"Development of an In-Orbit High-Voltage Experimental Platform: HORYU-4"

by Tatsuo Shimizu, Hiroshi Fukuda, Kazuhiro Toyoda and Mengu Cho


HORYU-4 is a 12-kg satellite currently under development at the Kyushu Institute of Technology. Its main mission is to perform an in-orbit high-voltage technology demonstration to evaluate state-of-the-art arc mitigation technologies in real space environments. The main objective is to perform a similar experiment as those on the ground for the validation of existing test methods. more...

-----------------------

A PUBLICATION OF THE IEEE NUCLEAR AND PLASMA SCIENCES SOCIETY

SEPTEMBER 2015   |  VOLUME 43  |  NUMBER 9  |  ITPSBD  |  (ISSN 0093-3813)

SPECIAL ISSUE ON SPACECRAFT CHARGING TECHNOLOGY


GUEST EDITORIAL
Special Issue on Spacecraft Charging Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. B. Garrett and A. C. Whittlesey

SPECIAL ISSUE PAPERS
Spacecraft Charge Modeling and Computer Codes
Aberrations in Particle Distribution Functions Near e-POP Particle Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. Marchand and S. Hussain
SPIS 5.1: An Innovative Approach for Spacecraft Plasma Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Thiébault, B. Jeanty-Ruard,
. . . . . . . . . . . . . . . . . . . . . . P. Souquet, J. Forest, J.-C. Matéo-Vélez, P. Sarrailh, D. Rodgers, A. Hilgers, F. Cipriani, D. Payan, and N. Balcon
SPIS 5: New Modeling Capabilities and Methods for Scientific Missions . . . . . . . . . . . . . . . . . . . . P. Sarrailh, J.-C. Matéo-Vélez, S. L. G. Hess,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J.-F. Roussel, B. Thiébault, J. Forest, B. Jeanty-Ruard, A. Hilgers, D. Rodgers, F. Cipriani, and D. Payan
New SPIS Capabilities to Simulate Dust Electrostatic Charging, Transport, and Contamination of Lunar Probes . . . . . . . . . . . . . S. L. G. Hess,
. . . . . . P. Sarrailh, J.-C. Matéo-Vélez, B. Jeanty-Ruard, F. Cipriani, J. Forest, A. Hilgers, F. Honary, B. Thiébault, S. R. Marple, and D. Rodgers
Simulation and Analysis of Spacecraft Charging Using SPIS and NASCAP/GEO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J.-C. Matéo-Vélez,
. . . . . . . . B. Theillaumas, M. Sévoz, B. Andersson, T. Nilsson, P. Sarrailh, B. Thiébault, B. Jeanty-Ruard, D. Rodgers, N. Balcon, and D. Payan
Application of AF-NUMIT2 to the Modeling of Deep-Dielectric Spacecraft Charging in the Space Environment . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. P. Beecken, J. T. Englund, J. J. Lake, and B. M. Wallin
Protection of the Spectr-R Spacecraft Against ESD Effects Using Satellite-MIEM Computer Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. S. Saenko, A. P. Tyutnev, E. V. Nikolski, and A. E. Bakutov
Electron Properties in Collisionless Mesothermal Plasma Expansion: Fully Kinetic Simulations . . . . . . . . . . . . . . . . . . . . . . .Y. Hu and J. Wang
Design and Numerical Assessment of a Passive Electron Emitter for Spacecraft Charging Alleviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J.-C. Matéo-Vélez, M. Belhaj, J.-F. Roussel, D. Rodgers, and F. Cipriani
Analysis of Charging Kinetics on Space Dielectrics Under Representative Worst Case Geostationary Conditions . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Paulmier, A. Sicard-Piet, D. Lazaro, M. Arnaout, and D. Payan
Trapped Photoelectrons During Spacecraft Charging in Sunlight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .S. T. Lai and K. Cahoy
Determination of Energy and Charge Deposition Profiles in Elemental Slabs From an Isotropically Equivalent Electron Source
     Using Monte Carlo Simulations
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. A. Barton, B. P. Beecken, and R. M. Hoglund
A Panorama of Electrical Conduction Models in Dielectrics, With Application to Spacecraft Charging . . . . . . . . . . . . . . . . . . . . . . . . . . P. Molinié
Self-Consistent Model of a High-Power Hall Thruster Plume . . . . . . . . . . . . . . . . . . . A. Lopez Ortega, I. Katz, I. G. Mikellides, and D. M. Goebel
Electrostatic Analysis of an Artificial Orbiting Satellite for Absolute Charging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. H. Alad and S. Chakrabarty

Material Properties and their Effects on Spacecraft Charging
Charging Properties of Space Used Dielectric Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Paulmier, B. Dirassen, M. Belhaj, and D. Rodgers
Surface Charging Considerations for Composite Materials Used in Spacecraft Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. J. Likar, R. E. Lombardi, A. L. Bogorad, and R. Herschitz
Radiation-Induced Conductivity of Space Used Polymers Under High Energy Electron Irradiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Paulmier, B. Dirassen, M. Arnaout, D. Payan, and N. Balcon
Experimental and Theoretical Studies of Radiation-Induced Conductivity in Spacecraft Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Tyutnev, V. Saenko, E. Pozhidaev, and R. Ikhsanov
Defects Density of States Model of Cathodoluminescent Intensity and Spectra of Disordered SiO2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. E. Jensen and J. R. Dennison
Dynamic Interplay Between Spacecraft Charging, Space Environment Interactions, and Evolving Materials . . . . . . . . . . . . . . . . . J. R. Dennison
Measurements of Endurance Time for Electrostatic Discharge of Spacecraft Materials: A Defect-Driven Dynamic Model . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Andersen, J. R. Dennison, A. M. Sim, and C. Sim
Detailed Investigation of the Low-Energy Secondary Electron Yield (LE-SEY) of Clean Polycrystalline Cu and of Its Technical
     Counterpart
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. Cimino, A. Di Gaspare, L. A. Gonzalez, and R. Larciprete

Laboratory and In-Situ Charging Experiments
Observation of Sustained Arc Circuit Failure on Solar Array Backside in Low Earth Orbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Bodeau
Arcing Test on an Aged Grouted Solar Cell Coupon With a Realistic Flashover Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J.-M. Siguier, V. Inguimbert, G. Murat, D. Payan, and N. Balcon
Study on Secondary Arcing Occurrence on Solar Panel Backside Wires With Cracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J.-M. Siguier, V. Inguimbert, G. Murat, D. Payan, and N. Balcon
Measurements of Physical Parameters Characterizing ESDs on Solar Cell and Correlation Between Spectral Signature and
     Discharge Position
. . . . . . . . . . . . . . V. Inguimbert, J.-M. Siguier, G. Murat, S. Reyjal, J.-C. Matéo-Vélez, P. Sarrailh, N. Balcon, and D. Payan
High-Current ESD Test of Advanced Triple Junction Solar Array Coupon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. H. Wright, Jr., T. A. Schneider, J. A. Vaughn, B. Hoang, and F. K. Wong
Diagnostic of Neutralization Current for Arcs on Satellite Solar Panel Coupons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. S. Joshi and S. B. Gupta
AFRL Round-Robin Test Results on Plasma Propagation Velocity . . . . . . . . . R. Hoffmann, D. Ferguson, J. Patton, A. T. Wheelock, J. A. Young,
. . M. W. Crofton, J. L. Prebola, D. H. Crider, J. J. Likar, T. A. Schneider, J. A. Vaughn, J. M. Bodeau, N. Noushkam, B. V. Vayner, and B. Hoang
Internal Charging Measurements in Medium Earth Orbit Using the SURF Sensor: 2005-2014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. A. Ryden, A. D. P. Hands, C. I. Underwood, and D. J. Rodgers
The Worst Case GEO Environment and the Frequency of Arcs in GEO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. C. Ferguson and I. Katz
Development of an In-Orbit High-Voltage Experimental Platform: HORYU-4 . . . . . . . . . . . . . . . . . T. Shimizu, H. Fukuda, K. Toyoda, and M. Cho
An Update of Spacecraft Charging Research in India: Spacecraft Plasma Interaction Experiments-SPIX-II . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . S. B. Gupta, K. R. Kalaria, N. P. Vaghela, R. S. Joshi, S. Mukherjee, S. E. Puthanveettil, M. Sankaran, and R. S. Ekkundi
Kinetic Simulations of Plasma Plume Potential in a Vacuum Chamber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Wang, D. Han, and Y. Hu
Interdependencies Between the Actively Controlled Cluster Spacecraft Potential, Ambient Plasma, and Electric Field Measurements . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Torkar, R. Nakamura, and M. Andriopoulou
Flashover Discharge Measurement With Uniform Surface Charging and Modeling of Current Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Toyoda, A. Kawano, S. Miyazaki, and M. Cho
Internal Charging Hazards in Near-Earth Space During Solar Cycle 24 Maximum: Van Allen Probes Measurements . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Mulligan Skov, J. F. Fennell, J. L. Roeder, J. B. Blake, and S. G. Claudepierre

Space Weather and Charging Effects on Space Systems
Review of Better Space Weather Proxies for Spacecraft Surface Charging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Bodeau
The Space Weather Threat to Situational Awareness, Communications, and Positioning Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. C. Ferguson, S. P. Worden, and D. E. Hastings
Spacecraft Charging, Plume Interactions, and Space Radiation Design Considerations for All-Electric GEO Satellite Missions . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. J. Likar, A. Bogorad, K. A. August, R. E. Lombardi, K. Kannenberg, and R. Herschitz
Electrostatic Tether Application for Scattering of Relativistic Particles in the Earth\'s Radiation Belts . . . . . . . . . . . . . . . . . . . . . A. Sanchez-Torres
Impacts of Hot Space Plasma and Ion Beam Emission on Electrostatic Tractor Performance . . . . . . . . . . . . . . . . . . E. A. Hogan and H. Schaub
Propulsive Force in an Electric Solar Sail for Outer Planet Missions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Sanchez-Torres



PART II OF TWO PARTS


REGULAR PAPERS
Basic Processes in Fully and Partially Ionized Plasmas
Modeling of Subnanosecond Discharge in Hydrocarbon Liquid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. V. Naidis

Microwave Generation and Microwave-Plasma Interaction
Strapped Magnetron Performance Affected by Dielectric Material Filling . . . . . . . . . . . . . . . S. K. Vyas, S. Maurya, R. K. Verma, and V. P. Singh
Effects of Pressure Variation on Polarization Properties of Obliquely Incident RF Waves in Re-Entry Plasma Sheath . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Liu, W. Bao, X. Li, D. Liu, and B. Bai
Theoretical Study of Mode Competition in Terahertz Gyrotron With Second Harmonic Oscillation . . . . . . . . . . . . Q. Zhao, S. Yu, and T. Zhang
Theoretical Investigation and Simulation of Resonant System of Sector and Hole-and-Slot Resonator Type Rising-Sun Magnetron . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Yue, Z. Zhang, and D. Gao
Revisiting Power Flow and Pulse Shortening in a Relativistic Magnetron . . . . J. G. Leopold, A. S. Shlapakovski, A. Sayapin, and Y. E. Krasik

Charged Particle Beams and Sources
First Lasing From a High-Power Cylindrical Grating Smith-Purcell Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. P. Bluem, R. H. Jackson, Jr., J. D. Jarvis, A. M. M. Todd, J. Gardelle, P. Modin, and J. T. Donohue

Industrial, Commercial, and Medical Applications of Plasmas
The Influence of Feed Gas Humidity Versus Ambient Humidity on Atmospheric Pressure Plasma Jet-Effluent Chemistry
     and Skin Cell Viability
. . . . . . . . . . S. Reuter, J. Winter, S. Iséni, A. Schmidt-Bleker, M. Dünnbier, K. Masur, K. Wende, and K.-D. Weltmann
Comparative Study of the Surface Cleaning for Ar-/He-Based Plasma Jets at Atmospheric Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Jin, C.-S. Ren, L. Yang, and D. Wang
Characteristics of a PDP-Based Radiation Detector Dependent on Different Electrode Structures . . . . . . . . . . . . . S. Eom, J. Kim, and J. Kang
SiOx Deposition on Polypropylene-Coated Paper With a Dielectric Barrier Discharge at Atmospheric Pressure . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. Li, Y. L. Wu, J. Hong, I. A. Shchelkanov, and D. N. Ruzic
Inactivation Effect of Low-Temperature Plasma on Pseudomonas aeruginosa for Nosocomial Anti-Infection . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . X.-M. Shi, W.-L. Liao, Z.-S. Chang, G.-J. Zhang, X.-L. Wu, X.-F. Dong, C.-W. Yao, B.-Y. Ye, P. Li, G.-M. Xu, S.-L. Chen, and J.-F. Cai
Investigation of the Physical Properties in Rotating Gliding Arc Discharge With Rapeseed Oil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. J. Wu, X. D. Li, L. Chen, C. M. Du, and J. H. Yan
Simple Device to Study Influence of Nanosecond Surface Microdischarge Plasma on Biomaterials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. E. Dubinov, J. P. Kozhayeva, and V. A. Lyubimtseva
Influence of Nozzle Shape on the Performance of Low-Power Ar Plasma Jet . . . . . . . . . . A. H. Ricci Castro, K. G. Kostov, and V. Prysiazhnyi
Reactive Blue Degradation in Aqueous Medium by Fe-Doping TiO2 Catalytic Nonthermal Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Sun, Y. Liu, R. Li, X. Li, H. Chen, G. Xue, and S. Ognier
Pulsed Voltage-Mode Supply for High-Pressure Sodium Lamps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. A. Vilela, Jr., and A. J. Perin
Decoupling the Thermal and Plasma Effects on the Operation of a Xenon Hollow Cathode With Oxygen Poisoning Gas . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. M. Capece, J. E. Polk, and J. E. Shepherd
The Influence of Water Characteristics on Plasma-Containing Bubble Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Huang, L. Zhang, H. Yan, Z. Liu, and K. Yan

Pulsed Power Science and Technology
Influences of Electric Parameters of Pulsed Power Supply on Electromagnetic Railgun System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Guo, L. Dai, Q. Zhang, F. Lin, Q. Huang, and T. Zhao
High-Power Nanosecond Pulse Generator With High-Voltage SRD and GDT Switch . . . . . . . . . . . M. Samizadeh Nikoo and S. M. A. Hashemi
Optimization Design of a Repetitive Nanosecond Pulse Generator Based on Saturable Pulse Transformer and Magnetic Switch . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Liu, S. Liu, Y. Han, Y. Ge, Q. Zhang, and F. Lin
Approximate Field Scaling of Railgun Launcher Under the Condition of Matching Projectile Dynamic Parameters . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Jin, J. Li, and B. Lei
Effects of Optical Pulse Parameters on a Pulsed UV-Illuminated Switch and Their Adjusting Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Li, W. Chen, Z. Chen, J. Tang, W. Jia, F. Guo, T. Yang, A. Qiu, J. Zhao, and Q. Zhang
Calculating Timing Sequence of Capacitor-Based Railgun With Given Muzzle Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Zhang, G. Cheng, W. Guo, Z. Su, T. Zhang, and Y. Yang
Investigation and Comparison on Switching Performance of Semiconductor Pulsed Power Devices . . . . . . . . . . . . . . . . C. Chen and L. Liang
High-Voltage Pulsed-Power Supply Operating at Repetitive Discharge Mode for Driving Very Small Plasma Focus Devices . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Jafari, M. Habibi, and H. R. Aali Vaneghi

Arcs & MHD
Critical Point Parameters and Cathode Spot Cells in Vacuum Arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. A. Mesyats and M. M. Tsventoukh

Fusion Science and Technology
The SMARDDA Approach to Ray Tracing and Particle Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. Arter, E. Surrey, and D. B. King

Special Issue on Atmospheric Pressure Plasma Jets and Their Applications
Comparative Studies of Double Dielectric Barrier Discharge and Microwave Argon Plasma Jets at Atmospheric
     Pressure for Biomedical Applications
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Florian, N. Merbahi, G. Wattieaux, J.-M. Plewa, and M. Yousfi

Special Issue on Plenary and Invited Papers from ICOPS-Beams 2014
The Application of Kiuttu's Formulation to Study Coaxial Flux Compression Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. B. Javedani, T. L. Houck, B. R. Poole, and A. D. White

Special Issue on Z-Pinch Plasmas 2015
Investigating Radial Wire Array Z-Pinches as a Compact X-Ray Source on the Saturn Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. J. Ampleford, S. N. Bland, C. A. Jennings, S. V. Lebedev, J. P. Chittenden,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. D. McBride, B. Jones, J. D. Serrano, M. E. Cuneo, G. N. Hall, F. Suzuki-Vidal, and S. C. Bott-Suzuk


ANNOUNCEMENTS
Call for Papers-Special Issue on High-Power Microwave Generation
Call for Papers-Special Issue on APSPT-9 2015, and SPSM-28
Call for Papers-Special Issue on Atmospheric Pressure Plasmas and Their Applications

Accessibility | Privacy and Opting Out of Cookies | Nondiscrimination Policy

Copyright 2015 IEEE - All rights reserved. Use of this newsletter site signifies your agreement to the IEEE Terms and Conditions.
A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology. [Response: Read Receipt]

To unsubscribe from all mailings, use your IEEE Account to update your "Personal Profile and Communication Preferences."

Replies to this message will not reach IEEE. Due to local e-mail service/provider settings, random characters may appear in some instances.

Although the IEEE is pleased to offer the privilege of membership to individuals and groups in the OFAC embargoed countries, the IEEE cannot offer certain services to members from such countries.

IEEE
445 Hoes Lane
Piscataway, NJ 08854 USA
+1 800 678 4333 (toll free, US & Canada)
+1 732 981 0060 (Worldwide)

For more information or questions regarding your IEEE Membership or IEEE Account, please direct your inquiries to the IEEE Contact Center.