T-NPS Header
T-PS Home  |  Editorial Board  |  T-PS in IEEE Xplore  |   Early Access  |  Manuscript Submission
FEATURED STORIES - OCTOBER 2017

"Does Spacecraft Potential Depend on the Ambient Electron Density?"

by Shu T. Lai, , Manuel Martinez-Sanchez, Kerri Cahoy, Michelle F. Thomsen, Yuri Shprits, Whitney Lohmeyer, and Frankie K. Wong

In this paper, we address the question of whether spacecraft potential depends on the ambient electron density. In Maxwellian space plasmas, the onset of spacecraft charging does not depend on the ambient electron density. The balance of electron currents causes the incoming electrons to balance with the outgoing secondary electrons. The onset is controlled by the critical or anticritical temperature of the ambient electrons, but not the electron density. Above the critical temperature, charging to negative potential occurs. If the energy of the incoming electrons increases to well beyond the second crossing point of the secondary electron yield (SEY), the value of SEY decreases to well below unity. When the secondary electron current is negligible compared with the primary electron current, the spacecraft potential is governed solely by the balance of the incoming electrons and the sum of the currents of the repelled electrons and the attracted ions. In neutral space plasma, the electron and ion charges cancel each other. But if the space plasma deviates from being neutral, then the densities can have effect on the spacecraft potential. If the ambient plasma deviates significantly from equilibrium, a non-Maxwellian electron distribution may result. For a kappa distribution, one can show that the spacecraft charging level is independent of the ambient electron density. For a double Maxwellian distribution, the spacecraft charging level depends on the electron densities. For a conducting spacecraft charging in sunlight, the charging level is low and positive. It also depends on the ambient electron density. For a dielectric spacecraft in sunlight, the high-level negative-voltage charging on the shadowed side may extend to the sunlit side and block the photoelectrons trying to escape from the sunlit side. In this case, the charging level does not depend on ambient electron density. Using coordinated environmental and spacecraft charging data obtained from the Los Alamos National Laboratory geosynchronous satellites, we showed some results confirming that spacecraft potential is indeed often independent of the ambient electron density. more...
-----------------------

"Electron Acceleration by a Radially Polarized Laser Pulse in an Ion Channel"

by Maninder Kaur and Devki Nandan Gupta

The presence of a preformed ion channel in a laser accelerator enhances the oscillatory velocity of electrons due to the confined motions that leads to increase the energy gain from acceleration. The unique properties of radially polarized laser beam are utilized which leads to improvement in trapping and acceleration of electron so that an electron can be accelerated further to a very high energy level. The enhancement in electron energy is due to fact that the radial field vanishes on axis, but only axial field survives which accelerates the electron longitudinally. The electrostatic field generated by an ion channel stops the electrons to escape from the interaction region due to the transverse oscillations and thus causes a resonance between the electrons and the electric field of laser pulse. Our results show that the combined role of radial polarization and the effect of an ion channel can enhance the electron energy gain significantly. more...
-----------------------

"Operation of a 140-GHz Gyro-Amplifier Using a Dielectric-Loaded, Severless Confocal Waveguide"

by Alexander V. Soane, Michael A. Shapiro, Sudheer Jawla, and Richard J. Temkin

The design and experimental results of a 140-GHz gyro-amplifier that uses a dielectric-loaded, severless confocal waveguide are presented. The gyro-traveling wave amplifier uses the HE06 mode of a confocal geometry with power coupled in and out of the structure with Vlasov-type, quasi-optical couplers. Dielectric loading attached to the side of the confocal structure suppresses unwanted modes allowing zero-drive stable operation at 48 kV and 3 A of beam current. The confocal gyro-amplifier demonstrated a peak circuit gain of 35 dB, a bandwidth of 1.2 GHz, and a peak output power of 550 W at 140.0 GHz. more...
-----------------------

A PUBLICATION OF THE IEEE NUCLEAR AND PLASMA SCIENCES SOCIETY

OCTOBER 2017   |  VOLUME 45  |  NUMBER 10  |  ITPSBD  |  (ISSN 0093-3813)

SPECIAL ISSUE FOR SELECTED PAPERS FROM EAPPC/BEAMS/MEGAGAUSS 2016


GUEST EDITORIAL
Special Issue for Selected Papers from EAPPC/BEAMS/MEGAGAUSS 2016 . . . . . . . . . . . . . . . . J. Leckbee, F. Silva, H.-J. Ryoo, and J. Yuan


SPECIAL ISSUE PAPERS
Pulsed Power Generation and Application
Marx Multilevel Bipolar Modulator Dynamic Models for Load Transient Analysis . . . . . . . . . . . . . . . . L. L. Rocha, J. F. Silva, and L. M. Redondo
Fast Semiconductor Switching Modules for Transformer-Coupled LC Inversion Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. Bischoff, V. Brommer, M. Stoll, and S. Scharnholz
Coherent Summation of Radiation From Four-Channel Shock-Excited RF Source Operating at 4 GHz and a Repetition
     Rate of 1000 Hz
. . . . . . . . . . M. R. Ul’maskulov, S. A. Shunailov, K. A. Sharypov, M. I. Yalandin, V. G. Shpak, M. S. Pedos, and S. N. Rukin
Comparative Study of the Biological Responses to Conventional Pulse and High-Frequency Monopolar Pulse Bursts . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Yao, Y. Zhao, Y. Mi, S. Dong, Y. Lv, H. Liu, X. Wang, and L. Tang
Investigation of Monolithic Radial Transmission Lines for Z-Pinch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Mao, X. Wang, X. Zou, and J. Lehr
Electrical and Acoustic Parameters of Wire-Guided Discharges in Water: Experimental Determination and Phenomenological Scaling . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Sun, I. V. Timoshkin, S. J. MacGregor, M. P. Wilson, M. J. Given, T. Wang, and N. Bonifaci
Rise-Time Improvement in Bipolar Pulse Solid-State Marx Modulators . . . . . . . . . . . . . . . . . . . . . . H. Canacsinh, J. F. Silva, and L. M. Redondo
Fault Tolerance Capability and Semiconductor’s Hold-Off Voltage of Solid-State Bipolar Marx Modulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Canacsinh, J. F. Silva, and L. M. Redondo
Solid-State Pulse-Forming Modules by Utilizing the 2-D Electrode Manufacturing Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Wang, Y. Jia, Q. Li, J. Liu, Y. Qiu, and X. Chu
Test of Device Based on Disk Magnetocumulative Generator DMCG480 With Explosive Current Opening Switch . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . V. A. Demidov, S. N. Golosov, A. S. Boriskin, S. A. Kazakov, O. M. Tatsenko, Y. V. Vlasov, A. P. Romanov, A. V. Filippov,
     E. A. Bychkova, A. N. Moiseenko, E. I. Schetnikov, S. V. Kutumov, N. R. Kazakova, S. I. Volodchenkov, A. S. Sevastyanov, and V. V. Kostin

A 120-kV, 5-kA Multipurpose Pulsed-Power Generator Using a Semiconductor Switch and Magnetic Pulse Compression . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. R. Jang, G. H. Rim, C. G. Cho, S. H. Song, S. M. Park, and H. J. Ryoo
Development of a 1.5 kV, 1.2 kA Pulsed-Power Supply for Light Sintering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C.-G. Cho, S.-H. Song, S.-M. Park, H.-I. Park, J.-S. Bae, S.-R. Jang, and H.-J. Ryoo
Experimental Study on Microsecond Pulse Breakdown Characteristics of Propylene Carbonate Modified by Al Nanoparticles . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Xu, Z. Zhang, Y. Hou, and H. Liu
Effects of Armature Height and Position on the Performance of Induction Coil Launcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Kwak, Y. S. Jin, Y. B. Kim, J. S. Kim, and C. Cho
Simulations of the Interaction of High-Velocity Condensed-Matter Liners With Walls . . . . . . . . . . . . . . . . . . . . . . . A. M. Buyko and S. F. Garanin
Modification of High-Voltage Pulse Waveform by the Spiral and Core-Transformer Ferrite-Filled Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. R. Ulmaskulov, S. A. Shunailov, Konstantin A. Sharypov, M. I. Yalandin, and V. G. Shpak
An Investigation of Discharge Characteristics of an Electrothermal Pulsed Plasma Thruster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Wang, W. Ding, L. Cheng, J. Yan, Z. Li, J. Wang, and Y. Wang
Power Modulator for High-Yield Production of Plasma-Activated Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     A. J. M. Pemen, P. P. van Ooij, F. J. C. M. Beckers, W. F. L. M. Hoeben, A. M. C. B. Koonen-Reemst, T. Huiskamp,  and  P. H. M. Leenders
Design of a 6-MW Solid-State Pulse Modulator Using Marx Generator for the Medical Linac . . . . . . . H. Lim, D. H. Jeong, M. Lee, and S. C. Ro

Particle Beam and High-Power Microwave
Cumulation of High-Current Electron Beams: Theory and Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . S. Anishchenko, V. Baryshevsky, N. Belous, A. Gurinovich, E. Gurinovich, E. Gurnevich, and P. Molchanov
Calibration With a Monocone on a Ground Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F. Bieth and P. Delmote
Wideband Resistive Sensors for Double-Ridged Waveguides . . . . . . . . . . . . . . . . . . . . . . . P. Ragulis, R. Simniškis, M. Dagys, and Ž. Kancleris
Fast Rise Time High Current Electron Beam: Emission, Acceleration, and Drift Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . S. A. Shunailov, G. A. Mesyats, I. V. Romanchenko, V. V. Rostov, K. A. Sharypov, V. G. Shpak, M. R. Ul’maskulov, and M. I. Yalandin
Modeling of Space Charge Effects in Intense Electron Beams: Kinetic Equation Method Versus PIC Method . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. Y. Kozhevnikov, A. V. Kozyrev, and N. S. Semeniuk
Ion Beam Monitoring Over a Biased Target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Lopes, J. Rocha, N. Catarino, and M. Peres


Magnetic Field Measurement and Application
Magnetoresistance Relaxation Anisotropy of Nanostructured La-Sr(Ca)-Mn-O Films Induced by High-Pulsed Magnetic Fields . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. Žurauskienė,
     D. Pavilonis,  J. Klimantavičius,  S. Balevičius,  V. Stankevič,  R. Vasiliauskas,  V. Plaušinaitienė,  A. Abrutis,  M. Skapas,  and  R. Jušenas

Influence of MOCVD Growth Pressure on Magnetoresistance of Nanostructured La-Ca-Mn-O Films Used for Magnetic Field Sensors . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. Žurauskienė, D. Pavilonis, J. Klimantavičius, S. Balevičius,
      V. Stankevič,  S. Keršulis,  V. Plaušinaitienė,  A. Abrutis,  R. Lukošė,  M. Skapas,  R. Juškenas,  B. Knašienė,  E. Naujalis,  and  J. M. Law

Multistep Accelerated Aging of Magnetic Field Sensors Based on Nanostructured La–Sr–Mn–O Thin Films . . . . . N. Žurauskienė, V. Rudokas,
     J. Klimantavičius, S. Balevičius, Č. Šimkevičius, S. Keršulis, V. Stankevič, D. Pavilonis, R. Vasiliauskas, V. Plaušinaitienė, and S. Tolvaisienė

Relaxation of Ferromagnetic and Paramagnetic State of Thin La-Sr-MnO Films Exposed by High-Power Picosecond Duration
     Optical Pulses
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Balevičius,
     S. Keršulis, M. Mališauskas, J. Klimantavičius, V. Stankevič, N. Žurauskienė, V. Plaušinaitienė, Z. Balevičius, K. Požela,  and  S. Tolvaišienė

Stabilized Liner Compressor for Low-Cost Controlled Fusion at Megagauss Field Levels . . . . . . . . . . . P. J. Turchi, S. D. Frese, and M. H. Frese


PART II OF TWO PARTS


Basic Processes in Fully and Partially Ionized Plasmas
Gyrofluid Model of Plasma Expansion in a Diverging Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Robertson

Microwave Generation and Microwave-Plasma Interaction
Design and Large-Signal Modeling of a W-Band Dielectric TWT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. P. Calame and A. M. Cook
Operation of a 140-GHz Gyro-Amplifier Using a Dielectric-Loaded, Severless Confocal Waveguide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. V. Soane, M. A. Shapiro, S. Jawla, and R. J. Temkin

Charged Particle Beams and Sources
Electron Acceleration by a Radially Polarized Laser Pulse in an Ion Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Kaur and D. N. Gupta

Industrial, Commercial, and Medical Applications of Plasmas
Phenomenology of Corona Discharge in Helium Admixtures Inside a Point-to-Point Electrode Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. Islam, P. D. Pedrow, and K. R. Englund

Pulsed Power Science and Technology
Full-Bridge Modular Multilevel Submodule-Based High-Voltage Bipolar Pulse Generator With Low-Voltage DC, Input for Pulsed Electric Field
      Applications
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. Abdelsalam, M. A. Elgenedy, S. Ahmed, and B. W. Williams

Space Plasmas
Electrostatic Discharge of Plasma Created by Hypervelocity Impact 2A12 Aluminum Targets With Gradient Potential . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. Wang, E. Tang, Y. Han, L. He, S. Liu, M. Wang, S. Xiang, and J. Xia
Does Spacecraft Potential Depend on the Ambient Electron Density? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. T. Lai, M. Martinez-Sanchez, K. Cahoy, M. F. Thomsen, Y. Shprits, W. Lohmeyer, and F. K. Wong


Special Issue on Vacuum Discharge Plasmas (ISDEIV - PS) 2016
Dynamic Dielectric Recovery Synergy of Hybrid Circuit Breaker With CO2 Gas and Vacuum Interrupters in Series . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Cheng, Z. Chen, G. Ge, Y. Wang, M. Liao, and L. Jiaou

Special Issue on Selected Papers from SOFE 2015
The Power Characteristic Results According to the Superconducting Magnet Coil Load Tests of the Motor Generator System . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D.-Y. Eom, S.-R. Hong, C.-H. Kim, S.-J. Roh, J.-D. Kong, and K.-R. Park


ANNOUNCEMENTS
Call for Papers—Special Issue on Selected Papers of the 16th Latin American Workshop on Plasma Physics
Call for Papers—Special Issue on Pulsed Power Science and Technology
Call for Papers—Special Issue of IEEE Transactions on Plasma Science on High-Power Microwave Generation
Call for Papers—7th Special Issue of the IEEE Transactions on Plasma Science Z-PINCH PLASMAS


Accessibility | Privacy and Opting Out of Cookies | Nondiscrimination Policy

Copyright 2017 IEEE - All rights reserved. Use of this newsletter site signifies your agreement to the IEEE Terms and Conditions.
A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. [Response: Read Receipt]

If you would like to be removed from this email distribution, please [Response: Unsubscribe from List].
If you have unsubscribed in error, please [Response: Subscribe to List].
To unsubscribe from all mailings, use your IEEE Account to update your "Personal Profile and Communication Preferences."

Replies to this message will not reach IEEE. Due to local email service/provider settings, random characters may appear in some instances.

Although the IEEE is pleased to offer the privilege of membership to individuals and groups in the OFAC embargoed countries, the IEEE cannot offer certain services to members from such countries.

IEEE
445 Hoes Lane
Piscataway, NJ 08854 USA
+1 800 678 4333 (toll free, US & Canada)
+1 732 981 0060 (Worldwide)

For more information or questions regarding your IEEE Membership or IEEE Account, please direct your inquiries to the IEEE Contact Center.