T-NPS Header
T-PS Home  |  Editorial Board  |  T-PS in IEEE Xplore  |   Early Access  |  Manuscript Submission
FEATURED STORIES - JULY 2017

"Experimental Investigation of Electron Collection by Rectangular Cuboid Probes in a High-Speed Plasma"

by Iverson C. Bell, III, Omar Leon, Grant C. Miars, and Brian E. Gilchrist

This paper describes ground-based scaled plasma experiments that simulated picosatellite and femtosatellite electron collection in the low earth orbit (LEO) ionospheric plasma, capturing special characteristics of these small spacecraft, including their possible rectangular cuboid shape, size relative to the plasma Debye length and the electron thermal gyroradius, and orientation with respect to plasma flow and magnetic field. It was observed that enhancing magnetic field strength to an appropriately scaled value to approximate LEO decreased the electron saturation current. The current collection characteristics were also impacted by the orientation of the probes relative to the magnetic field and the direction of plasma flow. In the voltage range tested, a model used in previous studies to predict electron saturation current underestimated the measured probe currents by a factor of two or more. Semi-empirical models developed here to calculate electron saturation currents that were within 10% of the measured currents. This experimental analysis enhances our understanding of current collection by rectangular cuboid probes in high-speed plasmas. more...
-----------------------

A PUBLICATION OF THE IEEE NUCLEAR AND PLASMA SCIENCES SOCIETY

JULY 2017   |  VOLUME 45  |  NUMBER 7  |  ITPSBD  |  (ISSN 0093-3813)
PART I OF TWO PARTS

SPECIAL ISSUE ON ELECTROMAGNETIC LAUNCHERS-2016


GUEST EDITORIAL
Guest Editorial 18th IEEE International EML Symposium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. D. Fair


SPECIAL ISSUE PAPERS
Symposium Organization
Keynote Address: History of the U.S. Navy Railgun Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Hogg
Thinking and Study of Electromagnetic Launch Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. Ma and J. Lu
Overview of Pulsed Alternators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Wu, W. Zhao, S. Wang, and S. Cui
Review of the Meat Grinder Circuits for Railguns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Yu and X. Liu
An Electromagnetic Rail Launcher by Quadrupole Magnetic Field for Heavy Intelligent Projectiles . . . . . Z. Yang, G. Feng, X. Xue, and T. Shu
Design and Analysis of Counter-Rotating Dual Rotors Permanent Magnet Compensated Pulsed Alternator . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Wu, W. Zhao, S. Wu, and S. Cui
Review of Inductive Pulsed Power Generators for Railguns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O. Liebfried
Design and Simulation of a New Brushless Doubly-Fed Pulsed Alternator for High-Energy Pulsed Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Cheng, P. Yuan, C. Kan, L. Chen, and Y. He
Rail Heating in a Rapid-Fire Multirail Launcher Powered by a Pulsed MHD Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. A. Shvetsov, S. V. Stankevich, V. G. Butov, and S. V. Sinyaev
Design and Analysis of a Modular Pulsed Alternator Power System for Driving 32-MJ Muzzle Energy Railgun . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Cui, S. Wang, S. Wu, O. S. Yurievich, and I. M. Milyaev
Some Key Parameters of Different Caliber Solid-Armature Railgun Related to Linear Current Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Chen, J. He, S. Xia, Z. Yuan, and H. He
An Inductive Pulsed-Power Supply Circuit Consisting of Multiple HTSPPT Modules With Capacitor Reuse Methodology . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Li, C. Zhang, Z. Li, Y. Hu, M. Gao, and X. Zheng
Thermal Design of Linear Induction and Synchronous Motors for Electromagnetic Launch of Civil Aircraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Bertola, T. Cox, P. Wheeler, S. Garvey, and H. Morvan
The Influence of Different Constraints and Pretightening Force on Vibration and Stiffness in Railgun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Che, W. Yuan, W. Xu, W. Cheng, Y. Zhao, and P. Yan
Research on Permanent Magnet Linear Synchronous Motors With Ring Windings for Electromagnetic Launch System . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Zhang, H. Zhou, J. Duan, and B. Kou
Self-Excitation and Energy Recovery of Air-Core Compulsators . . . . . . . . . . . . . . . . . W. Zhao, S. Wu, S. Cui, C. Gerada, H. Zhang, and Z. Xu
Improvement of a Low-Cost Combined Fitting Method for the Armature Speed and the Rail Current Measurement . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. Cao, S. Li, and M. Su
Research on Temperature Characteristic of Coaxial Cable Under the Condition of Repetitious Pulse High Current . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Dai, J. Lu, X. Zhang, J. Wang, and B. Zhu
XRAM Pulse Current Generator With Magnetic Flux Compression Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Ma, X. Yu, and Z. Li
Conceptual Design and Comparison for 100-kJ Inductive Pulse Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Ma, X. Yu, and Z. Li
Research on Armature’s Wearing and Dynamic Interior Ballistic of A Railgun . . . . . . . . . . . . . . . . . . . J. Wu, G. Wan, N. Cheng, L. Li, and B. Li
Rail Electromagnetic Launchers Powered by Pulsed MHD Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. G. Afonin, V. G. Butov, S. V. Sinyaev, V. A. Solonenko, G. A. Shvetsov, and S. V. Stankevich
Research on the No-Load Rotor Eddy Loss of a High-Speed Pulsed Alternator . . . . . . . . . J. Yang, C. Ye, G. Liu, X. Liang, W. Xu, and X. Wang
The Control Strategy and Experiment Research of Integrated Energy Storage Pulsed Alternator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Liu, C. Ye, J. Yang, X. Liang, and W. Xu
A Comparison of C-Shaped and Brush Armature Performance . . . . . . . . . . . . . B. Wild, F. Alouahabi, D. Simicic, M. Schneider, and R. Hoffman
Developing a Launch Package for the PEGASUS Launcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Hundertmark, G. Vincent, and D. Simicic
Parameter Analysis of the Energy Transfer Capacitor in the Meat Grinder With SECT Circuit . . . . . . . . . . . . . . . X. Liu, X. Yu, R. Ban, and Z. Li
Design of Control System for Battery Cascade Charging Power Supply . . . . . . . . . . . . . . . . . . . . . . . . K. Liu, Y. Gao, R. Fu, Y. Sun, and P. Yan
Simulation of a Seven-Phase Air-Core Pulsed Alternator Driving the Electromagnetic Rail Gun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Xie, K. Yu, F. Zhang, P. Tang, and J. Yao
3-D FEM Analysis on Electromagnetic Characteristics of an Air-Core Pulsed Alternator . . . . . . . . K. Yu, J. Yao, X. Xie, F. Zhang, and P. Tang
Analysis of Rail Erosion Damage During Electromagnetic Launch . . . . . . . . . . B. Cao, W. Guo, X. Ge, X. Sun, M. Li, Z. Su, W. Fan, and J. Li
Analysis of Rail Dynamic Deformation During Electromagnetic Launch . . . B. Cao, X. Ge, W. Guo, M. Li, X. Sun, J. Li, Y. Chen, and T. Zhang
Judging the Abnormal Rail-Armature Contact States With Waveforms of B-Dot Probes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Li, B. Cao, Z. Fan, W. Guo, H. Zhang, Z. Su, W. Fan, and X. Ge
Mathematical Model and Simulation Calculation Method of Metal Jet With High Velocity in the Passive Electromagnetic Armor . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Xiang, X. Yuan, and Y. Xing
Research on the Excitation Control of Brushless Doubly-Fed Alternator in a Novel Pulse Capacitor Charge Power Supply . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. Tang, K. Yu, X. Xie, S. Zhou, and J. Yao
Research on the Temperature Field of Multistage Synchronous Induction Coilgun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Zhang, Z. Su, W. Guo, H. Zhang, Wei Fan, Y. Chen, J. Li, and K. Huang
Spatial Movement Analysis on the Intercepting Projectile in the Active Electromagnetic Armor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Zhang, W. Dong, W. Guo, B. Cao, Zizhou Su, X. Sun, M. Li, and W. Fan
Investigation of the Driving Ability on Concave Armature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. Guo, T. Zhang, W. Shao, Z. Su, B. Cao, Y. Chen, J. Li, M. Li, K. Huang, R. Ren, and J. Liu
Design and Analysis of a High-Speed Permanent Magnet Compensated Pulsed Alternator . . . . . . . . . . . . . S. Wu, S. Wu, S. Cui, and W. Zhao
Time- and Frequency-Domain Characterization of Railgun Sliding Contact Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . T. G. Engel and N. M. Rada
Asteroid Mining and Deflection Using Electromagnetic Launchers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. G. Engel and M. A. Prelas
Scientific Classification Method for Electromagnetic Launchers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. G. Engel
Analysis of the Capacitor-Aided Meat Grinder Circuits for an Inductive Pulsed Power Supply . . . . . . . . . . . . . . . X. Liu, X. Yu, R. Ban, and Z. Li
Discussion on Minimum Precharged Voltage and Energy of the Counter-Current Capacitor in ICCOS . . . . . . . . X. Liu, X. Yu, R. Ban, and Z. Li
Research on Insulation Problems Under Multishot Experiments in Electromagnetic Rail Launcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. Xu, D. Li, W. Zhao, W. Xu, W. Yuan, and P. Yan
Synergy of Melt-Wave and Electromagnetic Force on the Transition Mechanism in Electromagnetic Launch . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Tang, Y. Xu, Q. Lin, and B. Li
Simulation of the Pulsed Power Supply Module Based on Electromagnetic Structure Coupling . . . . . . . . . X. Yu, J. Dong, J. Zhang, and Y. Cui
A New Finite-Element Method to Deal With Motion Problem of Electromagnetic Rail Launcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Tan, J. Lu, B. Li, Y. Zhang, and Y. Jiang
Effects of Armature Characteristics on Armature-Rail Contact Performance . . . . . . . . . . . . . . . . . . . . . W. Cheng, W. Yuan, Y. Zhao, and P. Yan
A Fractional Slot Multiphase Air-Core Compulsator With Concentrated Winding . . . . . W. Zhao, S. Wu, S. Cui, C. Gerada, H. Zhang, and Z. Xu
Velocity Precision Analysis With the Small Caliber Electromagnetic Launch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. Xu, W. Yuan, Y. Che, R. Fu, J. Wang, D. Zhang, and P. Yan
Shock-Resistance Rotor Design of A High-Speed PMSM for Integrated Pulsed Power System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Wan, S. Cui, S. Wu, L. Song, I. M. Milyaev, and S. O. Yuryevich
Research of a Modular Pulsed Alternator Power System . . . . . . . . . . . . . . . . . . . . . S. Cui, S. Wang, S. Wu, O. S. Yuryevich, and I. M. Milyaev
Research on Elastic Design About Filament Wound Barrel of Railgun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Xiao, D. Yin, and B. Li
The Effect of Salt-water Corrosion on Copper Alloy Rail Claddings in a Small Railgun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. G. Gnegy-Davidson, D. A. Wetz, D. Wong, and D. J. Horton
Electromechanical Numerical Analysis of an Air-Core Pulsed Alternator via Equivalent Network Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Musolino, M. Raugi, R. Rizzo, L. Sani, and V. Di Dio
Investigation of Magnetic Field Arrangement on Launching Performance of Multistage Synchronous Induction Coilgun . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T. Zhang, W. Guo, Z. Su, B. Cao, X. Sun, R. Ren, X. Ge, and M. Li
Analysis and Calculation of Rail Transient Temperature During Electromagnetic Launch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Cao, X. Ge, W. Guo, W. Fan, M. Li, J. Li, X. Sun, and Y. Chen
The Meat Grinder With SECT Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Yu, R. Ban, X. Liu, and Z. Li
Electromagnetic Compatibility and Current Pulse of Railgun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Gharib, A. Keshtkar, and A. Ghorbani
Thermal Management of Hybrid Energy Storage for Electromagnetic Launch . . . . . . . . . . . . . R. Zhou, J. Lu, G. Wang, X. Long, and X. Zhang
Some Key Parameters of Monolithic C-Type Armature in Rectangular Caliber Railgun . . . . . . . . . . . L. Chen, J. He, S. Xia, Z. Yuan, and H. He
Design of Voltage Feedback Controller With Thyristor’s Isolation Trigger Circuit for Charging Multigroups of Load . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Liu, X. Xu, Y. Gao, P. Yan, and Y. Sun
Thermal Analysis on Electromagnetic Launcher Under Transient Conditions . . . . . . . . . . . . . . . . L. Lin, W. Yuan, Y. Zhao, Z. Wang, and P. Yan
Design of a Compulsator to Drive a Railgun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. S. Kulkarni and M. J. Thomas
Flexible Sliding Contact Between Armature and Rails for the Practical Launcher Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Q. Lv, H. Xiang, B. Lei, Q. Zhang, X. Yuan, and Y. Xing
Design and Analysis of the 270-kJ PPS for Augmented Railgun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Fu, D. Zhang, W. Yuan, and P. Yan
Firing Accuracy Evaluation of Electromagnetic Railgun Based on Multicriteria Optimal Latin Hypercube Design . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. Ma, Y. Zhou, X. Shang, and M. Yang
Design and Research of a High-Speed and High-Frequency Pulsed Alternator . . . . . . . . . . . . . . . . . . . . . . C. Ye, J. Yang, X. Liang, and W. Xu
The Launch Performance Analysis of the Electromagnetic Coil Launcher Continuous Launch Process With Multiple Armature . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Xiao-Cun, L. Song-Cheng, L. Jun-Yong, and R. Zhou
The Dynamic Performance and Thermal Computation of Electromagnetic Rail Launcher Considering Parameters Variation . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Lu, J. Lou, and W. Ma
A New Fault Diagnosis and Prognosis Technology for High-Power Lithium-Ion Battery . . . . . . . . . . . . . . . . . . . . . . . . C. Wu, C. Zhu, and Y. Ge
Impact of Corroded Copper Rails on the Performance of a Miniature Electromagnetic Launcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. G. Gnegy-Davidson, D. A. Wetz, and D. Wong
Null-Flux Coils in Permanent Magnets Bearings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Musolino, R. Rizzo, L. Sani, and E. Tripodi
3-D Electromagnetic Analysis of Single-Phase Tubular Switched Reluctance Linear Launcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Chen, R. Nie, M. Sun, W. Deng, and K. Liang
A Method of Generating Timing for a Given Target Current Waveform in Electromagnetic Launch Technology . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. J. Ma, B. D. Zhang, C. W. Yuan, R. Yuan, W. Xu, and P. Yan
Research of Varying Frequency Driving Scheme for Asynchronous Induction Coil Launcher . . . . . . . . . . . . K. Liu, Z. Xiao, X. Niu, and Y. Zhang
Armature Structure Research of a Synchronous Induction Coil Launcher . . . . . . . . . . . . Z. Yadong, X. Gang, G. Yujia, N. Xiaobo, and L. Kaipei
Simulation Study on Mechanical Response of Cambered Surface Armature and Rail Under Electromagnetic and Thermal Loads . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Yang, J. Nie, R. Q. Liu, Q. J. Jiao, and J. Li
Research of Linear Charging for Repetition-Frequency Pulse Power Supply . . . . . . . . . . . . . . . . . . . . . . R. Fu, D. Zhang, Y. Sun, and P. Yan
Approach for Simulating Air Gap Between Armature and Rails Based on the A–V Finite-Element Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Yuan, Y. Geng, Z. Shen, and J. Li
One Kind of Approximate Field Scaling Relations in Railguns for Linearly Scaling Launcher Geometry . . . . . . . . . . . . . . . . . . . . L. Jin and J. Li
Design of a 20-kHz High Repetition-Rate Magnetic Pulse Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Zhang, Y. Zhou, W. Yuan, and P. Yan
Increasing Launch Efficiency With the PEGASUS Launcher . . . . . . . . . . . . . . . . . . . S. Hundertmark, G. Vincent, D. Simicic, and M. Schneider
Performance Evaluation of Electromagnetic Railgun Exterior Ballistics Based on Cloud Model . . . . . . . . . . . . . . . X. Shang, P. Ma, and T. Chao
Multiobjective Optimization of Multistage Synchronous Induction Coilgun Based on NSGA-II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Niu, K. Liu, Y. Zhang, G. Xiao, and Y. Gong
Main Cause of Groove Formation on Rails Might be Local Electro-Explosion Phenomenon . . . . . . . . . . . . . . . . . . . . Y. Geng, J. Yuan, and J. Li
Numerical Analysis of the Transient Inductance Gradient of Electromagnetic Launcher Using 2-D and 3-D Finite-Element Methods . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. An, B. Lee, Y. Bae, Y.-H. Lee, and S.-H. Kim
Dynamic Response of an Electromagnetic Launcher Accelerating a C-Shaped Armature . . . . . Y.-H. Lee, S.-H. Kim, S. An, Y. Bae, and B. Lee
Research on Superconducting Induction Maglev Linear Machine for Electromagnetic Launch Application . . . . . . . . J. Liu, H. Ma, and J. Cheng
Transient Thermal Design for Inverter Unit of High-Voltage Capacitor Charging Power Supply . . . . . . . . . . . . J. Han, K. Liu, Y. Gao, and P. Yan
Investigation of Gyroscopic Stabilization for Single-Stage Saddle Sextupole Field Electromagnetic Launcher . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .G. Fan, Y. Wang, X. Nie, Y. Hu, W. Chen, and Z. Yan
Electromagnetic Launching Systems to Geosynchronously Equatorial Orbit in Space and Cost Calculations . . . . . . . . . . . . . . . . . . . . . E. Inger
Experimental Studies on Melt Erosion at Rail-Armature Contact of Rail Launcher in Current Range of 10–20 kA/mm . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Xia, Y. Hu, L. Chen, J. He, Z. Yuan, H. He, P. Yan, and J. Li
A Novel Field Scaling Method in Electromagnetic Railguns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Li and L. Jin
Influence of External Factors on Self-healing Capacitor Temperature Field Distribution and Its Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Wang, F. Yan, M. Xu, Z. Wang, X. Wang, and Z. Xu
Research on Thermal Stress by Current Skin Effect in a Railgun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Tang, Q. Lin, and B. Li


PART II OF TWO PARTS


REGULAR PAPERS
Basic Processes in Fully and Partially Ionized Plasmas
Analysis of Space Charge Distribution in dc Corona Discharge Field Computed With Finite-Element Method . . . . . . . . . . . . . . . P. Marčiulionis
Fractal Analysis of Positive Streamer Patterns in Transformer Oil-Based TiO2 Nanofluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Lv, Y. Ge, Q. Du, Q. Sun, B. Shan, M. Huang, C. Li, B. Qi, and J. Yuan
Acceleration of Rotating Plasma Flows in Crossed Magnetic Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. R. Karimov and P. A. Murad

Microwave Generation and Microwave-Plasma Interaction
Study of Terahertz Radiation Generation by Two Laser Beams in an Axial Magnetized Rippled Density Plasma . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Hematizadeh and S. M. Jazayeri
A High-Efficiency Magnetically Insulated Transmission Line Oscillator . . . . . . . . . . . . . . . . . . . . . . D. Chen, J. Wen, Z. Luo, A. Yu, and Y. Zhang
Multipactor Breakdown Threshold Reduction Due to Magnetic Confinement in Parallel Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. A. Hubble, V. H. Chaplin, K. A. Clements, R. Spektor, P. T. sPartridge, and T. P. Graves
Development of a Subterahertz Folded-Waveguide Extended Interaction Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. Liu, Z. Zhang, C. Zhao, X. Guo, Z. Zhang, and S. Liao
Migration of Multipactor Trajectories via Higher-Order Mode Perturbation . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. A. Rice and J. P. Verboncoeur

Charged Particle Beams and Sources
Dependence of the Bremsstrahlung Spectral Temperature in Minimum-B Electron Cyclotron Resonance Ion Sources . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Benitez, C. Lyneis, L. Phair, D. Todd, and D. Xie

Pulsed Power Science and Technology
Performance Analysis of an All Solid-State Linear Transformer Driver . . . . . . . . . . . . . . . . . L. Collier, J. Dickens, J. Mankowski, and A. Neuber
A Circuit Particle-in-Cell Coupled Simulation of a Magnetically Insulated Transmission Line System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Wang, M. Peng, W. Luo, Y.-D. Li, and C.-L. Liu
200 kJ Pulsed Power System for Pulsed Plasma Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Borthakur, N. Talukdar, N. K. Neog, T. K. Borthakur, R. Kumar, R. Verma, and A. Shyam

Arcs & MHD
Dynamics of Surface Streamer Plasmas at Atmospheric Pressure: Mixtures of Argon and Methane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. V. Pachuilo, F. Stefani, R. D. Bengston, Dipti, R. Srivastava and L. L. Raja

Space Plasmas
Experimental Investigation of Electron Collection by Rectangular Cuboid Probes in a High-Speed Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. C. Bell, III, O. Leon, G. C. Miars, and B. E. Gilchrist


Special Issue on Plasma Assisted Technologies 2016
Plasma-Catalytic Reforming of Biofuels and Diesel Fuel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O. A. Nedybaliuk, V. Ya. Chernyak, I. I. Fedirchyk, V. P. Demchina, V. S. Popkov, M. V. Bogaenko,
      V. V. Iukhymenko,  N. V. Klochok,  E. V. Martysh,  V. A. Bortyshevsky,  R. V. Korzh,  S. V. Dragnev,  O. V. Prysiazhna,  and  V. O. Shapoval

A High-Energy Multispark Capacitor Discharge Ignition System for a Two-Stroke Direct Injection Spark Ignition Heavy Fuel Engine . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. Liu, M. Wei, C. Chang, H. Ji, T. Bei, and S. Xu

Special Issue on Selected Papers from SOFE 2015
Current Status of Korea Heat Load Test Facility KoHLT-EB for Fusion Reactor Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S.-K. Kim, S. D. Park, H. G. Jin, E. H. Lee, J.-S. Yoon, and D. W. Lee
Remote Handling Refurbishment Process for the European IFMIF Target Assembly: Concept Design, Simulation and Validation in
      Virtual Environment
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Miccichè, L. Lorenzelli, F. Frascati, G. Di Gironimo, and R. Mozzillo
Design Optimization of a Hydrogen Sensor for ITER Pb16Li Blankets . . . . . . . . . . . . . . . . . . . . L. Candido, I. Nicolotti, M. Utili, and M. Zucchetti


ANNOUNCEMENTS
Call for Papers—Special Issue on High Power Microwave Generation 2018
Call for Papers—Special Issue on Pulsed Power Science and Technology
Call for Papers—Special Issue on Micropropulsion and CubeSats


Accessibility | Privacy and Opting Out of Cookies | Nondiscrimination Policy

Copyright 2017 IEEE - All rights reserved. Use of this newsletter site signifies your agreement to the IEEE Terms and Conditions.
A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. [Response: Read Receipt]

If you would like to be removed from this email distribution, please [Response: Unsubscribe from List].
If you have unsubscribed in error, please [Response: Subscribe to List].
To unsubscribe from all mailings, use your IEEE Account to update your "Personal Profile and Communication Preferences."

Replies to this message will not reach IEEE. Due to local email service/provider settings, random characters may appear in some instances.

Although the IEEE is pleased to offer the privilege of membership to individuals and groups in the OFAC embargoed countries, the IEEE cannot offer certain services to members from such countries.

IEEE
445 Hoes Lane
Piscataway, NJ 08854 USA
+1 800 678 4333 (toll free, US & Canada)
+1 732 981 0060 (Worldwide)

For more information or questions regarding your IEEE Membership or IEEE Account, please direct your inquiries to the IEEE Contact Center.