T-NPS Header
T-PS Home  |  Editorial Board  |  T-PS in IEEE Xplore  |   Early Access  |  Manuscript Submission
We are happy to announce that T-PS has adopted a new reviewer scoresheet, which is now in place. The new reviewer questionnaire will appear for all papers going forward and will be sent to the authors via email in their decision letters. If you have not already seen the new questionnaire, please take a moment to review the changes.
FEATURED STORIES - AUGUST 2015

"Reflections of Electromagnetic Waves Obliquely Incident on a Multilayer Stealth Structure With Plasma and Radar Absorbing Material"

by Bowen Bai, Xiaoping Li, Jin Xu and Yanming Liu


To overcome some drawbacks of the plasma stealth technology in real-life application, a practical multilayer stealth structure composed of enclosed plasma slab and radar absorbing material (RAM) is presented in this paper. Based on a technique referred to as the transmission line analogy method, reflection coefficients of the perpendicularly polarized wave, the parallel polarized wave, and the circularly polarized wave obliquely incident upon this multilayer structure are determined, respectively. more...

-----------------------

"An Adjustable Magnetic Switch"

by Song Li, Jing-Ming Gao, Han-Wu Yang, Bao-Liang Qian and Yao Pan


In this paper, an adjustable magnetic switch (AMS) based on splice winding is investigated numerically and experimentally. The proposed AMS has advantage of high power level, high repetitive rate capability, long lifetime achievability, and electrical parameters tunability, which meets the growing requirements of the military and industrial application of pulsed power technology. Adjustment of the electrical parameters of magnetic switch is achieved by altering the number of windings via the modification of the joint points between the AMS and the main circuit more...

-----------------------

"Characterizing the Plasmas of Dense Z-Pinches"

by Dmitri D. Ryutov


This mini-tutorial summarizes the plasma characteristics important for the Z-pinch research, with an emphasis on high-density collisional plasmas. It begins with the discussion of the most basic plasma properties related to collisionality and magnetization and then proceeds to more complex phenomena associated with magnetic field evolution in a highly dynamical plasma. Plasma transport properties are discussed mostly in conjunction with the Magnetized Liner Inertial Fusion concept more...

-----------------------

"A Review of the Gas-Puff Z-Pinch as an X-Ray and Neutron Source"

by John L. Giuliani and Robert J. Commisso


Fisher and collaborators at the University of California, Irvine, invented the gas puff Z-pinch in the late 1970s using a 200-kA generator. The implementation of gas puffs as a copious source of X-rays has encountered major challenges, such as disruptive instabilities and the quest for long implosion times. During nearly four decades of experimental and theoretical efforts, those challenges have been successfully met to a great extent. more...

-----------------------

"Plasma of Vacuum Discharges: The Pursuit of Elevating Metal Ion Charge States, Including a Recent Record of Producing Bi13+"

by Georgy Yu. Yushkov, André Anders, Valeria P. Frolova, Alexey G. Nikolaev, Efim M. Oks, and Alexander V. Vodopyanov


Metal ions in the plasma of vacuum discharges are commonly multiply charged with ion charge states from 1+ to 3+, reaching 4+ and 5+ for some metals. The elevation of metal ion charge states in vacuum discharge plasma is an interesting challenge for plasma physics because it requires a deeper understanding of the processes leading to a more intense ionization of the electrode material. more...

-----------------------

A PUBLICATION OF THE IEEE NUCLEAR AND PLASMA SCIENCES SOCIETY

AUGUST 2015   |  VOLUME 43  |  NUMBER 8  |  ITPSBD  |  (ISSN 0093-3813)
PART I OF THREE PARTS

SPECIAL ISSUE ON VACUUM DISCHARGE PLASMAS - 2015


GUEST EDITORIAL
Special Issue on Vacuum Discharge Plasmas (ISDEIV-PS)-2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Batrakov and V. Kozhevnikov

SPECIAL ISSUE PAPERS

Pre-Explosion Phenomena Beneath the Plasma of a Vacuum Arc Cathode Spot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. A. Barengolts, D. L. Shmelev, and I. V. Uimanov
Hydrodynamics of the Molten Metal During the Crater Formation on the Cathode Surface in a Vacuum Arc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. A. Mesyats and I. V. Uimanov
Physics of Spotless Mode of Current Transfer to Cathodes of Metal Vapor Arcs . . . . . . . . . . . . . . . . . . . . . . . . . M. S. Benilov and L. G. Benilova
Modeling Spots on Composite Copper-Chromium Contacts of Vacuum Arcs and their Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. S. Benilov, M. D. Cunha, W. Hartmann, S. Kosse, A. Lawall, and N. Wenzel
Hybrid Computational Model of High-Current Vacuum Arcs With External Axial Magnetic Field . . . . . . . . . . . . . D. L. Shmelev and I. V. Uimanov
Stepwise and Statistical Simulation on the Random and Retrograde Motion of a Single Cathode Spot of Vacuum Arc . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Wang, Z. Shi, W. Li, X. Song, S. Jia, and L. Wang
3-D Simulation of High-Current Vacuum Arcs Under Combined Effect of Actual Magnetic Field and External Transverse Magnetic Field . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Qian, L. Wang, S. Jia, H. Wang, X. Huang, Z. Shi, H. Schellekens, and X. Godechot
Numerical Simulation of Thermal Characteristics of Anodes by Pure Metal and CuCr Alloy Material in Vacuum Arc . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Huang, L. Wang, S. Jia, Z. Qian, J. Deng, and Z. Shi
Theoretical Simulation of a Gas Breakdown Initiated by External Plasma Source in the Gap With Combined Metal–Dielectric Electrodes . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A. V. Kozyrev, V. Y. Kozhevnikov, N. S. Semeniuk, and L. A. Zyulkova
Prebreakdown Currents From Tungsten Samples Covered With Thin Films . . . . . . . . . . . . . D. N. Sinelnikov, V. A. Kurnaev, and N. V. Mamedov
Spectroscopic Investigation of a Cu-Cr Vacuum Arc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . R. Methling, S. Gorchakov, M. V. Lisnyak, S. Franke, A. Khakpour, S. A. Popov, A. V. Batrakov, D. Uhrlandt, and K.D. Weltmann
Plasma of Vacuum Discharges: The Pursuit of Elevating Metal Ion Charge States, Including a Recent Record of Producing Bi13+ . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Y. Yushkov, A. Anders, Valeria P. Frolova, A. G. Nikolaev, E. M. Oks, and A. V. Vodopyanov
Mass-to-Charge State of Vacuum Arc Plasma With a Film-Coated Composite Cathode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. P. Savkin, V. P. Frolova, A. G. Nikolaev, E. M. Oks, G. Y. Yushkov, and S. A. Barengolts
Thin-Film Deposition With Refractory Materials Using a Vacuum Arc . . . . . . . . . I. I. Beilis, Y. Koulik, Y. Yankelevich, D. Arbilly, and R. L. Boxman
Anode Erosion Pattern Caused by Blowing Effect in Constricted Vacuum Arcs Subjected to Axial Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Ma, Y. Tian, Y. Geng, Z. Wang, Z. Liu, and J. Wang
Anode Current Density Distribution Measurements for Different Vacuum Arc Modes Subjected to Axial Magnetic Field . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Ma, Z. Zhang, Z. Liu, Z. Wang, Y. Geng, and J. Wang
Pulsed Cathodic Arc for Forevacuum-Pressure Plasma-Cathode Electron Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. V. Kazakov, A. V. Medovnik, V. A. Burdovitsin, and E. M. Oks
Nanosecond Triggering for Sealed-Off Cold Cathode Thyratrons With a Trigger Unit Based on an Auxiliary Glow Discharg . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . Y. D. Korolev, N. V. Landl, V. G. Geyman, A. V. Bolotov, V. S. Kasyanov, V. O. Nekhoroshev, and S. S. Kovalsky
Results of Ultracompact Plasma Focus Operating in Repetitive Burst-Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. Shukla, A. Shyam, R. Verma, E. Mishra, M. Meena, K. Sagar, and P. Dhang



PART II OF THREE PARTS

SPECIAL ISSUE ON Z-PINCH PLASMAS 2015


GUEST EDITORIAL
Special Issue on Z-Pinches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F. Beg, J. Giuliani, S. Lebedev, and B. Jones

SPECIAL ISSUE PAPERS
Characterizing the Plasmas of Dense Z-Pinches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. D. Ryutov
A Review of the Gas-Puff Z Pinch as an X-Ray and Neutron Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. L. Giuliani and R. J. Commisso
Radiation Transport in Z-Pinches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. P. Apruzese and J. L. Giuliani
Fusion in a Staged Z-Pinch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F. J. Wessel, H. U. Rahman, P. Ney, and R. Presura
Calculation of the Equilibrium Evolution of the ZaP Flow Z-Pinch Using a Four-Chord Interferometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. D. Knecht, R. P. Golingo, B. A. Nelson, and U. Shumlak
2-D RMHD Modeling Assessment of Current Flow, Plasma Conditions, and Doppler Effects in Recent Z Argon Experiment . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. W. Thornhill, J. L. Giuliani, B. Jones, J. P. Apruzese, A. Dasgupta, Y. K. Chong,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. J. Harvey-Thompson, D. J. Ampleford, S. B. Hansen, C. A. Coverdale, C. A. Jennings, G. A. Rochau,
. . . . . . . . . . . . . . . . . . . M. E. Cuneo, D. C. Lamppa, D. Johnson, M. C. Jones, N. W. Moore, E. M. Waisman, M. Krishnan, and P. L. Coleman
Transmittance Measurement of Accelerated Ions and Electrons in Divergent Gas-Puff Z-Pinch Plasma . . . . . . . . . . . M. Nishio and K. Takasugi
Mid-Atomic-Number Cylindrical Wire Array Precursor Plasma Studies on Zebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . A. Stafford, A. S. Safronova, V. L. Kantsyrev, M. E. Weller, I. Shrestha, V. V. Shlyaptseva, C. A. Coverdale, and A. S. Chuvatin
Commissioning of a Rotated Wire Array Configuration for Improved Diagnostic Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . G. F. Swadling, G. N. Hall, S. V. Lebedev, G. C. Burdiak, F. Suzuki-Vidal, P. de Grouchy, L. Suttle, M. Bennett, and L. Sheng
Wire-Array Z-Pinch Length Variations for K-Shell X-Ray Generation on Z . . . . . . . . . . B. Jones, D. J. Ampleford, C. A. Jennings, E. M. Waisman,
. . . . . . . . . . S. B. Hansen, C. A. Coverdale, M. E. Cuneo, J. P. Apruzese, J. W. Thornhill, J. L. Giuliani, A. Dasgupta, R. W. Clark, and J. Davis
Numerical Simulation of Multiwire Z-Pinches Within the Framework of 3-D Magnetohydrodynamics . . . . . . . . . . . . . . A. P. Orlov and B. G. Repin
Experimental Studies of Hollow Structure Formed in the Dense Core of Exploded Wires . . . . . . . . . . . . . . . . . . . . S. A. Pikuz, T. A. Shelkovenko,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. L. Hoyt, J. D. Douglass, I. N. Tilikin, A. R. Mingaleev, V. M. Romanova, and D. A. Hammer
Investigation of Current Transport in 2 × 2 Wire Array Plasma . . . . . . . . . . . . . D. Mariscal, J. Valenzuela, G. Collins, IV, J. Chittenden, and F. Beg
Puffing Deuterium Compressed by a Neon Plasma Sheath at the Initial Poloidal Magnetic Field in Plasma Focus Discharge . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . P. Kubes, M. Paduch, J. Cikhardt, D. Klir, K. Rezac, J. Kravarik, B. Cikhardtova, J. Kortanek, and E. Zielinska
Dense Plasma Focus Device Based High Growth Rate Room Temperature Synthesis of Nanostructured Zinc Oxide Thin Films . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. S. Tan, R. J. Mah, and R. S. Rawat
The Generation of Warm Dense Matter Samples Using Fast Magnetic Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P.-A. Gourdain
Hollow Cathode Electron Beam Formation and Effects on X-Ray Emission in Capillary Discharges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. P. Valdivia, E. S. Wyndham, and M. Favre


PART III OF THREE PARTS


REGULAR PAPERS
Basic Processes in Fully and Partially Ionized Plasmas
Study of Transient Spark Discharge Properties Using Kinetic Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Dvonˇc and M. Janda

Microwave Generation and Microwave-Plasma Interaction
Multipactor Coating for Sapphire RF Windows Using Remote Plasma-Assisted Deposition . . . . . . . . . . . . . . . . . R. L. Ives, D. Zeller, G. Lucovsky,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E. Schamiloglu, D. Marsden, G. Collins, K. Nichols, and R. Karimov
Interaction Between the Maser Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. M. Kekez
Reflections of Electromagnetic Waves Obliquely Incident on a Multilayer Stealth Structure With Plasma and Radar Absorbing
     Material
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Bai, X. Li, J. Xu, and Y. Liu
A Long Cavity With Reduced Diffraction Q for Subterahertz and Terahertz Gyrotrons . . . . . . . . . . . . . . R. Ben Moshe, V. L. Bratman, and M. Einat
Design and Simulation of a Q-Band Gyrotron Backward-Wave Oscillator With Distributed Loss . . . . . . . . . . . . . . . . . K. Dong, Y. Tang, and Y. Luo
Control of the Operation Mode of a Relativistic Ka-Band Backward-Wave Oscillator . . . . . . . . . . . . . . . . . . . . . . . . G. S. Boltachev, V. V. Rostov,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. A. Sharypov, S. A. Shunailov, V. G. Shpak, M. R. Ul’maskulov, and M. I. Yalandin


Charged Particle Beams and Sources

Pole-Piece With Stepped Hole for Stable Sheet Electron Beam Transport Under Uniform Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. C. Panda, V. Srivastava, and A. Vohra


Plasma Diagnostics

Multifrequency Method for Measuring Properties of Shock Tube Produced Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Ma, M. Bai, and J. Miao
Elemental Analysis of Stones Using Laser-Induced Breakdown Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Mahmood, M. Akhtar, A. Jabbar, J. Iqbal, and M. A. Baig
High-Speed Camera and Fibered Optical Wave Microphone Measurements on Surface-Dielectric-Barrier Discharges . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F. Mitsugi, T. Nakamiya, Y. Sonoda, and H. Kawasaki
Advances in Impedance Probe Applications and Design in the NRL Space Physics Simulation Chamber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. D. Blackwell, C. D. Cothran, D. N. Walker, E. M. Tejero, G. R. Gatling, C. L. Enloe, and W. E. Amatucci

Pulsed Power Science and Technology
A 50 kJ Inductive-Capacitive Storage ModuleWith Solid-State High-Power Opening Switch Based on Counter-Current Thyristor . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Wang, L. Xie, G. Zhang, X. He, and Z. Chen
Current Transmission Efficiency for Conical Magnetically Insulated Transmission Line on a 1.0-MV Linear Transformer Driver System . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F. Guo, W. Zou, L. Liu, L. Chen, B. Wei, D. Liu, M. Wang, and W. Xie
Evaluating the Performance of a Carbon-Epoxy Capillary Cathode and Carbon Fiber Cathode in a Sealed-Tube Vircator Under
     UHV Conditions
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E. Rocha, P. M. Kelly, J. M. Parson, C. F. Lynn,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. C. Dickens, A. A. Neuber, J. J. Mankowski, T. Queller, J. Gleizer, and Y. E. Krasik
Electromagnetic Shielding Effectiveness Analysis of Isolated Phase Bus Applied for ITER Poloidal Field Converter . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Xia, Z. Song, Y. Yang, S. Li, and P. Fu
Anomalous Behavior of Electrically Exploding Aluminum Foils Under Vacuum . . . . . . . . . . . . . . . . A. K. Saxena, M. G. Sharma, and T. C. Kaushik
An Adjustable Magnetic Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Li, J.-M. Gao, H.-W. Yang, B.-L. Qian, and Y. Pan

Arcs & MHD
Study on Static and Dynamic Voltage Distribution Characteristics and Voltage Sharing Design of a 126-kV Modular Triple-Break Vacuum
     Circuit Breaker
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Huang, G. Wu, and J. Ruan
PTFE Vapor Contribution to Pressure Changes in High-Voltage Circuit Breakers . . . . . . J.-J. Gonzalez, P. Freton, F. Reichert, and A. Petchanka
On Conductivity of Cold Gas Layer Separating Arc Column and Nozzle in Nontransferred Plasma Arc (Anode Reattachment Process
     in Plasma Spray Systems)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. Nemchinsky
Electrical Arc Model Based on Physical Parameters and Power Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Khakpour, S. Franke, D. Uhrlandt, S. Gorchakov, and R.-P. Methling
Model for Variable-Length Electrical Arc Plasmas Under AC Conditions . . . . . . . . . . . . . . . . . . . . . . Z. Wu, G. Wu, M. Dapino, L. Pan, and K. Ni

Space Plasmas
Effects of Phosphor Persistence on High-Speed Imaging of Transient Luminous Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Qin, V. P. Pasko, S. Celestin, S. A. Cummer, M. G. McHarg, and H. C. Stenbaek-Nielsen

Special Issue on Megagauss Magnetic Fields: Production & Application - 2015
Fundamentals of Electrodynamic Technique of Numerical Designing of Helical High-Explosive Magnetic Generators . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. V. Pak, L. P. Babich, and A. V. Ivanovski˘

Special Issue on Plenary and Invited Papers from ICOPS-Beams 2014
Formation of the Blue Core in Argon Helicon Plasma . . . . . . . . . . . . . . . S. Chakraborty Thakur, C. Brandt, L. Cui, J. J. Gosselin, and G. R. Tynan
Overview of Pulsed Power Research at CAEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Deng, J. Shi, W. Xie, L. Zhang, S. Feng, J. Li, M. Wang,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Xia, Z. Dai, H. Li, Q. Li, L. Wen, S. Chen, X. Li, Z. Huang, Q. Lai, K. Zhang, M. Xia, Y. Guan, S. Song,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Chen, C. Ji, L. Zhou, A. He, W. Zou, X. Huang, S. Zhou, Z. Zhang, S. Zhang, X. Ren, B. Wei, Q. Tian,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Yang, H. Li, M. Xie, J. Liu, C. Ma, X. Ma, W. Wang, G. Wang, L. Yang, Y. Gu, Y. He, C. Li, Y. Zhou,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Zhang, G. Dai, H. Wang, N. Chen, C. Liu, C. Sun, Z. Xu, F. Meng, and H. Ma

Special Issue on Images in Plasma Science - 2014
Control of Spatial Power Deposition by Wireless Power Transfer Method Applicable to Inductively Coupled Plasma . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S.-J. Oh, H.-C. Lee, and C.-W. Chung

ANNOUNCEMENTS
Call for Papers-Special Issue on High-Power Microwave Generation
Call for Papers-Special Issue on APSPT-9 2015, and SPSM-28
Call for Papers-Special Issue on Atmospheric Pressure Plasmas and Their Applications

Accessibility | Privacy and Opting Out of Cookies | Nondiscrimination Policy

Copyright 2015 IEEE - All rights reserved. Use of this newsletter site signifies your agreement to the IEEE Terms and Conditions.
A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology. [Response: Read Receipt]

To unsubscribe from all mailings, use your IEEE Account to update your "Personal Profile and Communication Preferences."

Replies to this message will not reach IEEE. Due to local e-mail service/provider settings, random characters may appear in some instances.

Although the IEEE is pleased to offer the privilege of membership to individuals and groups in the OFAC embargoed countries, the IEEE cannot offer certain services to members from such countries.

IEEE
445 Hoes Lane
Piscataway, NJ 08854 USA
+1 800 678 4333 (toll free, US & Canada)
+1 732 981 0060 (Worldwide)

For more information or questions regarding your IEEE Membership or IEEE Account, please direct your inquiries to the IEEE Contact Center.