T-NPS Header
T-PS Home  |  Editorial Board  |  T-PS in IEEE Xplore  |   Early Access  |  Manuscript Submission
FEATURED STORIES - NOVEMBER 2016

"Optimizing the Parameters of a 12-Cavity Rising-Sun Relativistic Magnetron With Single-Stepped Cavities for π-Mode Operation"

by Meiqin Liu, Chunliang Liu, Zhanqi Wang, Weihua Jiang, and Edl Schamiloglu

We investigated the use of single-stepped cavities instead of typical tapered cavities in an A6 magnetron with diffraction output (MDO) and a 12-cavity MDO through particlein-cell (PIC) simulations using MAGIC and UNIPIC in our earlier publications. The interaction space, where the charged particles interact with the induced RF waves, was increased by replacing tapered cavities with single-stepped cavities in a 12-cavity rising-sun relativistic magnetron with diffraction output (RMDO) that the electronic efficiency of π--mode generation in a 12-cavity rising-sun RMDO with singlestepped cavities driven by a transparent cathode with gigawatt output power level can be as high as 83% for α = 12.5°, 79% for α = 17.5°, and 82% for α = 18.2° at β = 32°, where α is the angle between the inner wall and the z-axis, and β is the angle between the outer wall and the z-axis. When α, the angle between the inner wall and the z-axis, is changed, the depth of single-stepped cavities was changed. This would lead to the coupling between deep cavities and shallow cavities in the 12-cavity rising-sun MDO changing too, and which finally results in different frequencies of magnetron operation in the π-mode. As we know, gigawatt nanosecond output power pulse is useful for the nanoradar system, and our PIC simulations found that when a 400-kV voltage pulse of 10-ns duration is applied to a 12-cavity rising-sun MDO driven by a transparent cathode or a solid cathode, the output power of the π-mode can be as high as 1.5 GW. Without loss of generality, for α = 12.5° and β = 32°, the peak efficiency of π-mode generation in a 12-cavity risingsun MDO with single-stepped cavities design is around 82% and occurs for voltage V ~ 400 kV ± 50 kV. This paper describes optimizing the parameters in a 12-cavity rising-sun RMDO for the desired π-mode operation. more...
-----------------------

A PUBLICATION OF THE IEEE NUCLEAR AND PLASMA SCIENCES SOCIETY

NOVEMBER 2016   |  VOLUME 44  |  NUMBER 11  |  ITPSBD  |  (ISSN 0093-3813)
PART I OF TWO PARTS

SPECIAL ISSUE ON ATMOSPHERIC PRESSURE PLASMAS AND THEIR APPLICATIONS


GUEST EDITORIAL
Special Issue on Atmospheric Pressure Plasmas and Their Applications . . . . . . . . . . . . . . . . . . . . . T. Shao, J. Zhuang, S. Prasad, and D. Wang

DEDICATION
Dedication to the Memory of Dr. Ulrich Kogelschatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K.-D. Weltmann and M. Laroussi


SPECIAL ISSUE PAPERS
Plasma Sources and Processes
Theoretical Analysis of Ionization in Long-Term Air Discharge Plasmas at Atmospheric Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. V. Ardelyan, V. L. Bychkov, and K. V. Kosmachevskii
Transition From Glow Microdischarge to Arc Discharge With Thermionic Cathode in Argon at Atmospheric Pressure . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. I. Eliseev, A. A. Kudryavtsev, H. Liu, Z. Ning, D. Yu, and A. S. Chirtsov
The Effect of PD Process on the Accumulation of Surface Charges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Pan, J. Tang, and K. Wu
Influence of Driving Frequency on the Argon Dielectric Barrier Discharge Excited by Gaussian Voltage at Atmospheric Pressure . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Xu, W. Jiang, J. Tang, S. Zhu, Y. Wang, Y. Li, W. Zhao, and Y. Duan
Contrasting Characteristics of Atmospheric Pressure Cold Plasma Jets With Different Tube Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Song, J. Tang, L. Wei, N. Zhang, J. Qian, Y. Wang, and D. Yu
Dynamic Characteristics of Dielectric Barrier Columnar Discharge During Its Decay . . . . . . . . . . . . . . . . . . . Z. Huang, L. Yang, Y. Hao, and L. Li
Experimental Research on Mode Transitions of Atmospheric Pressure Helium Dielectric Barrier Discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C.-W. Yao, Z.-S. Chang, H. Ma, G. Xu, H. Mu, and G.-J. Zhang
Creeping Discharge Characteristics of Nanofluid-Impregnated Pressboards Under AC Stress . . . . . . . . . . . Y. Lv, Y. Zhou, C. Li, Y. Ge, and B. Qi
Study of the Characteristics of Cold Ar Atmospheric Pressure Plasma Jet Generated With Inverted Tapered Tube . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F. Ren, S. Ji, Z. Hao, and Y. Shi
Generation of Microwave Capillary Argon Plasmas at Atmospheric Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. W. Hemawan, D. W. Keefer, J. V. Badding, and R. J. Hemley
The Influence of Gas Pressure, Voltage, and Frequency on Plasma Propagation in Tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Qiu, L. Nie, Y. Xian, D. Liu, Y. Yue, and X. Lu
Discharge Simulation of Typical Air Gap Considering Dynamic Boundary and Charge Accumulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Ding, F. Lv, Z. Zhang, C. Liu, J. Geng, and Q. Xie
A Multigap Structure for Power Frequency Arc Quenching in 10-kV Systems . . . . . . . . . . . . . . . . . . . . . . T. Guo, W. Zhou, Z. Su, H. Li, and J. Yu
A 3.4-μm-Sized Atmospheric-Pressure NonequilibriumMicroplasma Array With High Aspect Ratio and High Electron Density . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Wu, J. Gou, X. Lu, and M. Tang
New Macroparticle Coalescing Models That Conserve Particle’s Phase-Space Distribution in 3-D Particle-in-Cell
     Simulations of Plasmas
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Wang, X. Fu, R. Wang, and Y. Li
Experimental Study of the Effects of Magnetic Field Intensity on Trichel Pulses . . . . . . . . . . . . . . . D. Zhou, J. Tang, L. Wei, C. Zhang, and D. Yu
A New Plasma Jet Array Source: Discharge Characteristics and Mechanism . . . . . . . . . . . . . . . D. Li, D. Liu, Z. Chen, M. Rong, and M. G. Kong

Applications of Atmospheric Plasma
Experimental Evaluation of DBD Reactor Applied to Bacterial Inactivation in Water Flowing
     Continuously
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. G. Gutiérrez-León, B. G. Rodríguez-Méndez,
     R. López-Callejas,     R. Peña-Eguiluz,     R. Valencia-Alvarado,     A. Mercado-Cabrera,     A. E. Muñoz-Castro,   and   J. M. Belman-Flores

Mechanism of Decane Decomposition in a Pulsed Dielectric Barrier Discharge Reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Yao, S. Weng, Q. Jin, H. Lu, Z. Wu, X. Zhang, J. Han, H. Lu, X. Tang, and B. Jiang
Rapid Disinfection Performance of a Touchable Pulsed SDBD Nonthermal Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Zheng, Y. Kou, Z. Liu, C. Li, Y. Huang, and K. Yan
Kinetic Analysis of Delivery of Plasma Reactive Species Into Cells Immersed in Culture Media . . . . . . . . . . . . . P. Bao, X. Lu, M. He, and D. Liu
Disruption of Microbial Cell Within Waste Activated Sludge by DC Corona Assisted Pulsed Electric Field . . . . . . . . Y. Gao, Y. Deng, and Y. Men
Effect of TiO2 Crystal Phase and Preparation Method on the Catalytic Performance of Au/TiO2 for CO Oxidation . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Di, D. Duan, X. Zhang, B. Qi, and Z. Zhan
Effects of Atmospheric-Pressure Nonthermal Nitrogen and Air Plasma on Bacteria Inactivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Xiao, C. Cheng, Y. Lan, G. H. Ni, J. Shen, Y. D. Meng, and P. K. Chu
Cobalt Containing Polyimide Films Treated by Nanosecond Pulsed Electrical Discharges in Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Miron, J. Zhuang, M. Balcerak, M. Holub, A. Kruth, A. Quade, I. Sava, K.-D. Weltmann, and J. F. Kolb
Dynamics of Pantograph–Catenary Arc During the Pantograph Lowering Process . . . . . . . . G. Gao, J. Hao, W. Wei, H. Hu, G. Zhu, and G. Wu
Enhanced Growth of Single Droplet by Control of Equivalent Charge on Droplet . . . . . . . . . . . . X. Tan, Y. Qiu, Y. Yang, D. Liu, X. Lu, and Y. Pan
Indirect Treatment Effects of Water–Air MHCD Jet on the Inactivation of Penicillium Digitatum Suspension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Liu, C. Wang, H. Hu, J. Lei, and L. Han
High-Efficiency Removal of NOx From Flue Gas by Multitooth Wheel-Cylinder Corona Discharge Plasma Facilitated
     Selective Catalytic Reduction Process
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. Jiang, K.-F. Shang, N. Lu, H. Li, J. Li, and Y. Wu
Time-Selective TALIF Spectroscopy of Atomic Oxygen Applied to an Atmospheric Pressure Argon Plasma Jet . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Q. Xiong, H. Liu, N. Britun, A. Y. Nikiforov, L. Li, Q. Chen, and C. Leys
Measurements of Plasma-Generated Hydroxyl and Hydrogen Peroxide Concentrations for Plasma Medicine Applications . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. F. Yue, S. Mohades, M. Laroussi, and X. Lu
Time-Resolved Observation of Plasma Jets Synchronized With Fibered Optical Wave Microphone Measurement . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F. Mitsugi, T. Nakamiya, Y. Sonoda, and T. Kawasaki
Ablation Properties and Elemental Analysis of Silicone Rubber Using Laser-Induced Breakdown Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Wang, H. Wang, C. Chen, and Z. Jia
Electrical Characteristics in Surface Dielectric Barrier Discharge Driven by Microsecond Pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Zhang, Y. Wang, Y. Zhou, Q. Xie, R. Wang, P. Yan, and T. Shao
A High-Performance Drive Circuit for All Solid-State Marx Generator . . . . . . . . . . . . . . . . . . . . .Z. Zhou, Z. Li, J. Rao, S. Jiang, and T. Sakugawa
Influence of Actuating Position on Asymmetric Vortex Control With Nanosecond Pulse DBD Plasma Actuators . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Y. Long, H. Li, X. Meng, F. Liu, and S. Luo
On the Discharge Mode of Pulsed DBD in Nitrogen at Atmospheric Pressure . . . . . . . . . . . . . . Y. Wang, X. Han, Y. Feng, J. Zhang, and D. Wang
Nanosecond-Pulsed Dielectric Barrier Discharge Plasma Actuator for Airflow Control Along an NACA0015 Airfoil
     at High Reynolds Number
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E. Moreau, A. Debien, N. Benard, and N. Zouzou
Investigation on the Characteristics of Dielectric Barrier Surface Discharge Driven by Repetitive Nanosecond Pulses
     in Airflows
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. P. Lei, H. Kun, Z. Qiaogen, D. Dongxu, and L. Tianjun




PART II OF TWO PARTS


REGULAR PAPERS
Basic Processes in Fully and Partially Ionized Plasmas
An Efficient Semi-Lagrangian Algorithm for Simulation of Corona Discharges: The Position-State Separation Method . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Liu and M. Becerra

Microwave Generation and Microwave-Plasma Interaction
A Ridge-Loaded Sine Waveguide for G-Band Traveling-Wave Tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Zhang, Y. Wei, G. Guo, C. Ding, Y. Wang, X. Jiang, G. Zhao, J. Xu, W. Wang, and Y. Gong
Analyzing the Electromagnetic Scattering Characteristics for 3-D Inhomogeneous Plasma Sheath Based on PO Method . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S.-H. Liu and L.-X. Guo
Design Methodology and Beam–Wave Interaction Study of a Second-Harmonic D-Band Gyroklystron Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. V. Swati, M. S. Chauhan, and P. K. Jain
Optimizing the Parameters of a 12-Cavity Rising-Sun Relativistic Magnetron With Single-Stepped Cavities for π-Mode Operation . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Liu, C. Liu, Z. Wang, W. Jiang, and E. Schamiloglu
Excitation of Azimuthal Surface Waves Above the Upper-Hybrid Frequency by External Relativistic Flows of Electrons in Coaxial
     Plasma-Vacuum Waveguide
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. O. Girka and M. Thumm

Charged Particle Beams and Sources
Space-Charge Field Assisted Electron Acceleration by Plasma Wave in Magnetic Plasma Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. N. Gupta, M. Kaur, K. Gopal, and H. Suk

Pulsed Power Science and Technology
Introduction of Tensioned Inner Wire Electrode for NOx Treatment With Nanosecond Pulsed Power System . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Morimoto, R. Arai, K. Omatsu, K. Teranishi, and N. Shimomura
A Bipolar High-Voltage Pulsed-Power Supply Based on Capacitor-Switch Voltage Multiplier . . . . . . . . . . . A. Alijani, J. Adabi, and M. Rezanejad
Research on the Self-Magnetic Field Distribution Characteristics of the Triggered Vacuum Switch With Multirod System . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Wang, F. Lin, L. Dai, and J. Zhang
A Modular Multilevel-Based High-Voltage Pulse Generator for Water Disinfection Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. A. Elgenedy, A. Darwish, S. Ahmed, and B. W. Williams

Space Plasmas
Nonlinear Isothermal Acoustic Wave Propagation in Quantum Degenerate Electron–Positron–Ion Plasmas . . . . . . A. El-Depsy and M. M. Selim

Dusty Plasmas
Dust Charge Polarity Effect on Dust-Ion Acoustic Modulational Instability in a Nonthermal Dusty Plasma With Adiabatic Ions . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. Akhtar and S. Mahmood

Special Issue on Selected Papers from SOFE 2015
Prospects for Self-Burning Operation in Heliotron-Type Fusion Reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. Sakamoto and H. Yamada
Continuous State-Space Model in dq Frame of the Thyristor AC/DC Converters for Stability Analysis of ITER Pulsed Power
     Electrical System
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Finotti, E. Gaio, I. Benfatto, I. Song, and J. Tao

Technical Note
Modeling Arc in Transverse Magnetic Field by Using Minimum Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. Nemchinsky

Accessibility | Privacy and Opting Out of Cookies | Nondiscrimination Policy

Copyright 2016 IEEE - All rights reserved. Use of this newsletter site signifies your agreement to the IEEE Terms and Conditions.
A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. [Response: Read Receipt]

If you would like to be removed from this email distribution, please [Response: Unsubscribe from List].
If you have unsubscribed in error, please [Response: Subscribe to List].
To unsubscribe from all mailings, use your IEEE Account to update your "Personal Profile and Communication Preferences."

Replies to this message will not reach IEEE. Due to local email service/provider settings, random characters may appear in some instances.

Although the IEEE is pleased to offer the privilege of membership to individuals and groups in the OFAC embargoed countries, the IEEE cannot offer certain services to members from such countries.

IEEE
445 Hoes Lane
Piscataway, NJ 08854 USA
+1 800 678 4333 (toll free, US & Canada)
+1 732 981 0060 (Worldwide)

For more information or questions regarding your IEEE Membership or IEEE Account, please direct your inquiries to the IEEE Contact Center.