T-NPS Header
T-PS Home  |  Editorial Board  |  T-PS in IEEE Xplore  |   Early Access  |  Manuscript Submission
FEATURED STORIES - DECEMBER 2015

"Metamaterials for Rapidly Forming Large-Area Distributed Plasma Discharges for High-Power Microwave Applications"

by Chien-Hao Liu, Paul Carrigan, Brian J. Kupczyk, Xun Xiang, Nader Behdad, John E. Scharer and John H. Booske


Electromagnetic metamaterials have broad application potential including new high-power microwave (HPM) sources and anti-HPM devices. In the previous work, we demonstrated that an initial breakdown at one location within a multiresonator unit cell of the single-layer metamaterial emitted vacuum ultra-violet (VUV) radiation that induced breakdowns at the neighboring locations even though the electric field intensities were below the breakdown thresholds.more...
-----------------------

"Electron-Beam Dynamics for an Advanced Flash-Radiography Accelerator"

by Carl Ekdahl


Beam dynamics issues were assessed for a new linear induction electron accelerator being designed for multipulse flash radiography of large explosively driven hydrodynamic experiments. Special attention was paid to equilibrium beam transport, possible emittance growth, and beam stability. more...
-----------------------

"A High-Vacuum High-Electric-Field Pulsed Power Interface Based on a Ceramic Insulator"

by Tao Xun, Han-Wu Yang, and Jian-De Zhang


Improving the flashover voltage in a vacuum interface between a pulsed power system and a vacuum region has been a goal for many years. The interface problem is difficult because of the electrical, mechanical, and vacuum issues that must be satisfied simultaneously. In this paper, according to the theories of vacuum flashover and the design rules for high-electric-field insulators, a ceramic-insulated vacuum interface is presented. more...
-----------------------

"Laboratory Measurement of Lunar Regolith Simulant Surface Charging in a Localized Plasma Wake"

by William Yu, Joseph Wang and Kevin Chou


Laboratory experiments are carried out to measure the charging of Johnson Space Center Number OneA lunar simulant surface in a localized plasma wake similar to that at the lunar terminator. The results show that the floating potential of a regolith surface in a plasma wake may be significantly different from that of a solid dielectric surface because ion collection on a regolith surface is sensitively influenced by the surface collection area of dust grains. more...
-----------------------

"Synthesis Gas Afterburner Based on an Injector Type Plasma-Assisted Combustion System"

by Igor B. Matveev, Serhiy I. Serbin, Volodymyr V. Vilkul and Nataliia A. Goncharova


This paper presents the results of theoretical and experimental investigations of a developed synthesis gas afterburner based on an injector type plasma-assisted combustion system. The basic overall dimensions of the afterburner with the injecting device are determined. The design concept can provide higher performance, wider turndown ratios, more efficient synthesis gas combustion, and satisfaction of major ecological requirements. more...
-----------------------

A PUBLICATION OF THE IEEE NUCLEAR AND PLASMA SCIENCES SOCIETY

DECEMBER 2015   |  VOLUME 43  |  NUMBER 12  |  ITPSBD  |  (ISSN 0093-3813)
PART I OF TWO PARTS

SPECIAL ISSUE ON PLASMA-ASSISTED TECHNOLOGIES 2015


GUEST EDITORIAL
Special Issue on Plasma-Assisted Technologies 2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. B. Matveev and T. Ombrello

SPECIAL ISSUE PAPERS
Plasma-Assisted Reforming of Natural Gas for GTL: Part II-Modeling of the Methane–Oxygen Reformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .S. I. Serbin, I. B. Matveev, and G. B. Mostipanenko
Plasma-Assisted Reforming of Natural Gas for GTL: Part III-Gas Turbine Integrated GTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. B. Matveev, N. V. Washchilenko, and S. I. Serbin
Synthesis Gas Afterburner Based on an Injector Type Plasma-Assisted Combustion System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. B. Matveev, S. I. Serbin, V. V. Vilkul, and N. A. Goncharova
Experimental Investigation of Premixed Methane-Air Combustion Assisted by Alternating-Current Rotating Gliding Arc . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. W. Wu, G. H. Ni, Q. F. Lin, Q. J. Guo, and Y. D. Meng
Plasma-Enhanced Ignition and Flame Stabilization in Microwave Plasma-Assisted Combustion of Premixed
     Methane/Oxygen/Argon Mixtures
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. Wu, C. A. Fuh, and C. Wang
Experimental Study of the Atmospheric Plasma Jet for the Plasma-Assisted Combustion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. V. Kolosenok, A. L. Kuranov, A. B. Nikitenko, V. S. Soukhomlinov, and A. A. Savarovskii
Generation of Electrohydraulic Shock Waves by Plasma-Ignited Energetic Materials: I. Fundamental Mechanisms and Processes . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. Han, H. Zhou, Q. Liu, J. Wu, Y. Jing, Y. Chao, Y. Zhang, and A. Qiu
Generation of Electrohydraulic Shock Waves by Plasma-Ignited Energetic Materials: II. Influence of Wire Configuration and Stored Energy . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Zhou, R. Han, Q. Liu, Y. Jing, J. Wu, Y. Zhang, A. Qiu, and Y. Zhao
Generation of Electrohydraulic Shock Waves by Plasma-Ignited Energetic Materials: III. Shock Wave Characteristics With Three
     Discharge Loads
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Zhou, Y. Zhang, H. Li, R. Han, Y. Jing, Q. Liu, J. Wu, Y. Zhao, and A. Qiu
2-D Modeling of Orificed Hollow Cathodes of Stationary Plasma Thrusters SPT-100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Liu, M. Li, Z. Ning, J. Ren, H. Tang, D. Yu, E. V. Demidov, S. I. Eliseev, and A. A. Kudryavtsev
2-D Extended Fluid Model of Applied-Field Magnetoplasmadynamic Thruster With Solid and Hollow Cathodes . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Li, H. Liu, Z. Ning, J. Ren, H. Tang, D. Yu, E. V. Demidov, S. I. Eliseev, and A. A. Kudryavtsev
Modeling of Artificial Ball Lightning With a Help of Capillary Discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. L. Bychkov, V. A. Chernikov, A. S. Osokin, A. I. Stepanov, and I. G. Stepanov
Modeling of Ion Ascending in Troposphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. L. Bychkov and D. S. Maximov
Evaporation of Salt Water in a Mist Coflowing With Propane and Air . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. L. Morgan and L. A. Rosocha
Formation of Nanosized Yttria in a DC Plasma Reactor and Its Characterization . . . . . . . . . . . . . . . . . V. Chaturvedi, P. V. Ananthapadmanabhan,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Chakravarthy, A. Pragatheeswaran, J. Sharma, T. Mahata, S. Bhandari, B. Raneesh, and A. Nagaraj



PART II OF TWO PARTS


REGULAR PAPERS
Basic Processes in Fully and Partially Ionized Plasmas
Equilibrium and Nonequilibrium Features in a Warm He+H2O Microwave Plasma at Atmospheric Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. A. Ridenti, J. de Amorim, and A. D. Pino, Jr.
Zero-Dimensional Theoretical Model of Subnanosecond High-Pressure Gas Discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. V. Kozyrev, V. Y. Kozhevnikov, and N. S. Semeniuk
Gas Flow Rate Dependence of the Discharge Characteristics of a Plasma Jet Impinging Onto the Liquid Surface . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Uchida, A. Nakajima, K. Takenaka, K. Koga, M. Shiratani, and Y. Setsuhara

Microwave Generation and Microwave-Plasma Interaction
A Novel Folded Waveguide for V-Band TWT . . . . . . . . . . . . . . . . . . . . M. Liao, Y. Wei, H. Wang, J. Xu, Y. Liu, Y. Gong, W. Wang, and G.-S. Park
A Simple Equivalent Circuit Model for Plasma Dipole Antenna . . . . . . . . M. M. Magdy, H. A. E.-A. Mahat, S. H. Zauind-Deen, and K. H. Awadalla
Metamaterials for Rapidly Forming Large-Area Distributed Plasma Discharges for High-Power Microwave Applications . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C.-H. Liu, P. Carrigan, B. J. Kupczyk, X. Xiang, N. Behdad, J. E. Scharer, and J. H. Booske

Charged Particle Beams and Sources
A Cookbook for Building a High-Current Dimpled H Magnetron Source for Accelerators . . . . . . . . . . D. S. Bollinger, P. R. Karns, and C.-Y. Tan
Electron-Beam Dynamics for an Advanced Flash-Radiography Accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Ekdahl

Pulsed Power Science and Technology
A High-Vacuum High-Electric-Field Pulsed Power Interface Based on a Ceramic Insulator . . . . . . . . . . . . . T. Xun, H.-W. Yang, and J.-D. Zhang
Soliton Production With Nonlinear Homogeneous Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . J. M. Elizondo-Decanini, D. Coleman, M. Moorman, S. Petney, E. Dudley, K. Youngman, T. Penner, L. Fang, and K. Myers
Waveguide Mode Formation as a Potential Cause of Switch Failure in High-Power Wide-Bandgap Photoconductive Switches . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Wolfe, A. Francis, D. Langley, J. C. Petrosky, J. Roos, A. Terzuoli, and T. Zens

Arcs & MHD
Evaporation Erosion of Contacts Under Static Arc by Gas Dynamics and Molten Pool Simulation . . . . . . . X. Zhou, X. Cui, M. Chen, and G. Zhai
Experimental Investigation of High-Current Vacuum Arc Instability Modes Under Transverse Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Feng, S. Xiu, G. Liu, Y. Wang, and Y. Zhang

Space Plasmas
Internal Dielectric Charging Simulation of a Complex Structure With Different Shielding Thicknesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Wang, X.-J. Tang, Z.-C. Wu, and Z. Yi
Laboratory Measurement of Lunar Regolith Simulant Surface Charging in a Localized Plasma Wake . . . . . . . . . . . W. Yu, J. Wang, and K. Chou

Dusty Plasmas
Propagation Properties of Terahertz Waves in a Time-Varying Dusty Plasma Slab Using FDTD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Wang, M. Yu, Z. Xu, G. Li, B. Jiang, and J. Xu
MD Simulation of Charged Dust Particles With Dipole Moments . . . . . . . . . . . . . . . . . . . T. S. Ramazanov, A. Z. Gabdulin, and Z. A. Moldabekov

Fusion Science and Technology
ELM Regime Classification by Conformal Prediction on an Information Manifold . . . . . . . . . . . A. Shabbir, G. Verdoolaege, J. Vega, and A. Murari

Special Issue on Plasma Propulsion - 2014
Small Electric Propulsion Platform for Active Space Debris Removal . . . . . . . . . . . . . . . . . . . . . . . . . . A. Ruggiero, P. Pergola, and M. Andrenucci

Special Issue on Selected Papers from EAPPC 2014
Gas Heating and Streamer-to-Leader Transition of Impulse Surface Discharge on Quartz Glass in Atmospheric Air . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. Sasamoto, T. Matsumoto, Y. Izawa, and K. Nishijima


ANNOUNCEMENTS
Call for Papers-Special Issue on APSPT-9 2015 and SPSM-28
Call for Papers-Special Issue on Atmospheric Pressure Plasmas and Their Applications


2015 INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Available online at http://ieeexplore.ieee.org


Accessibility | Privacy and Opting Out of Cookies | Nondiscrimination Policy

Copyright 2015 IEEE - All rights reserved. Use of this newsletter site signifies your agreement to the IEEE Terms and Conditions.
A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology. [Response: Read Receipt]

To unsubscribe from all mailings, use your IEEE Account to update your "Personal Profile and Communication Preferences."

Replies to this message will not reach IEEE. Due to local email service/provider settings, random characters may appear in some instances.

Although the IEEE is pleased to offer the privilege of membership to individuals and groups in the OFAC embargoed countries, the IEEE cannot offer certain services to members from such countries.

IEEE
445 Hoes Lane
Piscataway, NJ 08854 USA
+1 800 678 4333 (toll free, US & Canada)
+1 732 981 0060 (Worldwide)

For more information or questions regarding your IEEE Membership or IEEE Account, please direct your inquiries to the IEEE Contact Center.