T-NPS Header
T-PS Home  |  Editorial Board  |  T-PS in IEEE Xplore  |   Early Access  |  Manuscript Submission
FEATURED STORIES - APRIL 2016

"Theory and New Amplification Regime in Periodic Multimodal Slow Wave Structures With Degeneracy Interacting With an Electron Beam"

by Mohamed A. K. Othman, Venkata Ananth Tamma, and Filippo Capolino



We present the theory of a new amplification regime in traveling wave tubes (TWTs) composed of a slow wave periodic structure that supports multiple electromagnetic modes that can all be synchronized with the electron beam. The interaction between the multimodal slow wave structure and the electron beam is quantified using a multi-transmission line (MTL) approach based on a generalized Pierce model and transfer matrix analysis, leading to the identification of modes with complex Bloch wavenumber. In particular, we address a new possible operation condition for TWTs based on the supersynchronism between an electron beam and four modes exhibiting a degeneracy condition near a band edge of the periodic slow wave MTL. We show a phenomenological change in the band structure of a periodic MTL, where we observe at least two growing modal cooperating solutions as opposed to a uniform MTL, interacting with an electron beam where there is rigorously only one growing modal solution. more...
-----------------------

"On Dust Wave Instabilities in Collisional Magnetized Plasmas"

by M. Rosenberg


The physics of dusty plasmas in high magnetic field is an area of current interest, spurred by the development of experiments in this area. Dust acoustic (or dust density) waves have been observed in many laboratory dusty plasmas where there is either no or weak magnetic field. These waves may be excited by the flow of ions relative to dust. The effects of high magnetic field on the excitation of dust waves have been considered in the theoretical literature, including instabilities driven by ions streaming either along or across the magnetic field. We review and extend prior theory work on such instabilities, exploring their behavior as the magnetization of the ions is varied, while the electrons are strongly magnetized and the dust is unmagnetized. more...
-----------------------

"A Study of Ion Drag for Ground and Microgravity Dusty Plasma Experiments"

by Taylor H. Hall and Edward Thomas, Jr

This paper presents the results of a recent study of the interaction between charged dust particles and plasma ions through the electrostatic and ion drag forces in a dc glow discharge plasma. Measurements of the dust particles motion are carried out using particle image velocimetry (PIV). When an electrostatic perturbation is applied to the dust cloud, the particle motion, in response to the perturbation, is shown to reverse direction as the gas pressure is increased. An analysis of the dust particle motion and background plasma parameters suggests that there is a change in the equilibrium position and competition between the electrostatic force and the ion drag force on the particles that lead to the asymmetric motion of the cloud. The ion drag and electric forces on the dust particles are calculated at each pressure using detailed measurements of the plasma parameters, as measured by a single Langmuir probe. more...
-----------------------

"Evolution of Dust Clouds in Afterglow Plasmas"

by John K. Meyer and Robert L. Merlino

The observations of the evolution of dust clouds in afterglow plasmas at various neutral pressures are presented. Four cases were studied which showed a large variation in the cloud dynamics. In two cases, the clouds responded by rapidly shedding an outer layer of dust. In another case, the entire cloud exhibited a nearly uniform expansion-Coulomb explosion. In perhaps the most exotic case, the cloud splits into two clouds-Coulomb fission. The results for the case of the Coulomb expansion were compared with a theoretical model that included the effects of neutral drag. more...
-----------------------

"Underwater Electrical Explosion of Wires and Wire Arrays and Generation of Converging Shock Waves"

by Yakov E. Krasik, Sergei Efimov, Daniel Sheftman, Alexander Fedotov-Gefen, Oleg Antonov, Daniel Shafer, David Yanuka, Michael Nitishinskiy, Maxim Kozlov, Leonid Gilburd, Gregory Toker, Svetlana Gleizer, Eran Zvulun, Victor Tz. Gurovich, Dmitry Varentsov, and Maria Rodionova

A brief review of the results obtained in recent research of underwater electrical explosions of wires and wire arrays using microsecond-, submicrosecond-, and nanosecondtimescale high-current generators is presented. In a microsecondtimescale wire explosion, good agreement was attained between the results of experiments and the results of magnetohydrodynamic calculations coupled with equations of state (EOS) and modern conductivity models. Conversely, in a nanosecondtimescale wire explosion, the wire resistance and the EOS were modified in order to fit experimental data. In experiments with cylindrical and spherical wire arrays, generation of a converging shock wave (SW) was demonstrated allowing formation of an extreme state of water in the vicinity of either the axis or the origin of the SW's implosion. more...
-----------------------

"43 Years of Fun Basic Plasma Physics Experiments"

by Noah Hershkowitz

This paper presents an overview of some of the most enjoyable low-temperature plasma experiments I have carried out with my students over the course of my career. It begins with the connection between solitons and the Schrödinger equation, and continues with the discovery of cylindrical solitons. From moving structures, we progress to stable ones: sheaths and double layers. How can we measure double-layer potentials? This question leads to the development of emissive probe techniques. more...
-----------------------

A PUBLICATION OF THE IEEE NUCLEAR AND PLASMA SCIENCES SOCIETY

APRIL 2016   |  VOLUME 44  |  NUMBER 4  |  ITPSBD  |  (ISSN 0093-3813)
PART I OF THREE PARTS

SPECIAL ISSUE ON PLENARY AND INVITED PAPERS FROM ICOPS-BEAMS 2015


GUEST EDITORIAL
Special Issue on Plenary and Invited Papers From ICOPS-BEAMS 2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T. Shao and B. Jones

SPECIAL ISSUE PAPERS
43 Years of Fun Basic Plasma Physics Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. Hershkowitz
Optimization of a Laser-Based Proton Source and a New Mechanism of Ion Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. V. Brantov, D. V. Romanov, and V. Y. Bychenkov
THz Backward-Wave Oscillators for Plasma Diagnostic in Nuclear Fusion . . . . . . . . . . . . . . . . . . C. Paoloni, D. Gamzina, L. Himes, B. Popovic,
      . . . . . . . . . . . . . . . . . . R. Barchfeld, L. Yue, Y. Zheng, X. Tang, Y. Tang, P. Pan, H. Li, R. Letizia, M. Mineo, J. Feng, and N. C. Luhmann, Jr.,
Coherent Summation of Emission From Relativistic Cherenkov Sources as a Way of Production of Extremely High-Intensity
     Microwave Pulses
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. S. Ginzburg, A. W. Cross, A. A. Golovanov, A. D. R. Phelps, I. V. Romanchenko,
      . . . . . . . . . . . . . . . . . . . . . . . . V. V. Rostov, K. A. Sharypov, V. G. Shpak, S. A. Shunailov, M. R. Ul'masculov, M. I. Yalandin, and I. V. Zotova
Colored Diffuse Mini Jets in Runaway Electrons Preionized Diffuse Discharges . . . . . . . . . . V. F. Tarasenko, D. V. Beloplotov, and M. I. Lomaev
Dynamics of Plasma Bullets in a Microsecond-Pulse-Driven Atmospheric-Pressure He Plasma Jet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. Wang, Y. Gao, C. Zhang, P. Yan, and T. Shao
Effects of N2/O2 Additives on the Repeatability of the Dynamics of an Atmospheric-Pressure He Plasma Jet . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Wu, J. Duan, and X. Lu
Plasma-Catalytic CO2 Hydrogenation at Low Temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Zeng and X. Tu
Underwater Electrical Explosion of Wires and Wire Arrays and Generation of Converging Shock Waves . . . . . . . . . . . . . Y. E. Krasik, S. Efimov,
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Sheftman, A. Fedotov-Gefen, O. Antonov, D. Shafer, D. Yanuka, M. Nitishinskiy,
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Kozlov, L. Gilburd, G. Toker, S. Gleizer, E. Zvulun, V. T. Gurovich, D. Varentsov, and M. Rodionova
Double and Single Planar Wire Arrays on University-Scale Low-Impedance LTD Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. S. Safronova,
      . . . . . . . . . . . . . . . . . . . V. L. Kantsyrev, M. E. Weller, V. V. Shlyaptseva, I. K. Shrestha, M. Y. Lorance, M. T. Schmidt-Petersen, A. Stafford,
      . . . . . . . . . . . . . . . . . . . M. C. Cooper, A. M. Steiner, D. A. Yager-Elorriaga, S. G. Patel, N. M. Jordan, R. M. Gilgenbach, and A. S. Chuvatin
Origin and Evolution of Spontaneous Rotation in Plasma Under Different Magnetic Field Geometries in Tokamak QUEST . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Mishra, H. Zushi, H. Idei, T. Onchi, M. Hasegawa, K. Hanada, and QUEST Team



PART II OF THREE PARTS

SPECIAL ISSUE ON DUSTY PLASMAS 2015


GUEST EDITORIAL
Special Issue on the Physics of Dusty Plasmas 2015 . . . . . . . . . . . . . . . . . . . . . . . . . U. Konopka, M. Thoma, E. Thomas, Jr., and J. D. Williams

SPECIAL ISSUE PAPERS
Basic Processes in Fully and Partially Ionized Plasmas
On Dust Wave Instabilities in Collisional Magnetized Plasmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Rosenberg
Wave Phenomena in a Stratified Complex Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Kretschmer, T. Antonova, S. Zhdanov, and M. Thoma
A Study of Ion Drag for Ground and Microgravity Dusty Plasma Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. H. Hall and E. Thomas, Jr.
Structural Properties of Buffer and Complex Plasmas in RF Gas Discharge-Imposed Electrostatic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. K. Dosbolayev, A. U. Utegenov, and T. S. Ramazanov
Evolution of Dust Clouds in Afterglow Plasmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. K. Meyer and R. L. Merlino
Mode Excitation in Finite Dust Clusters Using an Optical Trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Block, F. Wieben, and J. Schablinski
Test of the Einstein Relation in Dusty Plasmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Liu and J. Goree
Theory of Heating of a Nonreciprocal System of Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. I. Lisina, O. S. Vaulina, and E. A. Lisin
Small Amplitude Dust-Electron-Acoustic Shock Waves and Double Layers in a Nonextensive Complex Plasma With Viscous
     Electron Fluids
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. R. Hossen, S. A. Ema, and A. A. Mamun
Electrodynamic Properties of Dense Semiclassical Plasmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. K. Baidualiyeva, K. N. Dzhumagulova,
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. S. Ramazanov, and A. Bakirzhankyzy
Secondary Emission From Clusters Composed of Spherical Grains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. Richterová, Z. Nĕmeček, J. Pavlů,
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Šafránková, and J. Vaverka
Investigations of Photoemission From Lunar Dust Simulant . . . . . . . . . . . L. Nouzák, I. Richterová, J. Pavlů, Z. Nĕmeček, and J. Šafránková
Multipole Expansions of Aggregate Charge: How Far to Go? . . . . . . . . . . . . . . . . . . . . . . . . . . . L. S. Matthews, D. A. Coleman, and T. W. Hyde
Dust Particle Evolution in the Divertor Plasma . . . . . . . . . . . . . . . . . . . . S. K. Kodanova, N. Kh. Bastykova, T. S. Ramazanov, and S. A. Maiorov
On the Competition Between the Phenomena Involved in the Aerosol Dynamics in Sputtering Nonequilibrium
     Plasma
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Michau, K. Hassouni, C. Arnas, and G. Lombardi
DPLX: Experiment to Investigate Heating and Stability in Magnetized Rotating Dusty Plasmas . . . . . . . . . . . . . . . . . . . . C. A. Romero-Talamás,
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E. M. Bates, W. J. Birmingham, and W. F. Rivera
Development of a Bitter-Type Magnet System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E. M. Bates, W. J. Birmingham, and C. A. Romero-Talamás
Manipulation of Dusty Plasma Properties via Driving Voltage Waveform Tailoring in a Capacitive Radiofrequency Discharge . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. Kh. Bastykova, Z. Donkó, S. K. Kodanova, T. S. Ramazanov, and Z. A. Moldabekov
Laser Heating of 2-D Dusty Plasmas Using a Random Arc Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Haralson and J. Goree
Real-Time Particle Tracking in Complex Plasmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Lynch, U. Konopka, and E. Thomas
Initial Result of 3-D Reconstruction of Dusty Plasma Through Integral Photography Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Sanpei, N. Takao, Y. Kato, and Y. Hayashi
Application of the Hilbert Transform to Measure the Nonlinearity in the Driven Dust Acoustic Wave . . . . . . . . . . . . . . . . . . . . . . . . . . J. Williams
Scattering of Dust Particles With Nonzero Dipole Moments . . . . . . S. K. Kodanova, T. S. Ramazanov, N. Kh. Bastykova, and Z. A. Moldabekov




PART III OF THREE PARTS


REGULAR PAPERS
Basic Processes in Fully and Partially Ionized Plasmas
3-D Particle-in-Cell Simulation of Laser-Produced Plasma in Axial Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . A. Roy, A. Endo, and T. Mocek
Enhanced Production of High-Charge-State Ions in ECRIS by Simultaneously Applied Special Wall Coating and
     Two-Frequency Heating
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Schachter, K. E. Stiebing, and S. Dobrescu

Microwave Generation and Microwave-Plasma Interaction
Preliminary Design and Experiment of a Ridge-Loaded Staggered Single-Slot Rectangular Coupled-Cavity Structure for X-Band
      Traveling-Wave Tube
. . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Yue, G. Wu, J. Huang, L. Zhan, G. Zhao, Y. Wei, H. Yin, W. Wang, and Y. Gong
Theory and New Amplification Regime in Periodic Multimodal Slow Wave Structures With Degeneracy Interacting With an Electron
     Beam
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. A. K. Othman, V. A. Tamma, and F. Capolino
The Effect of Plasma Density Profile on Two-Plasmon Decay in Tokamak Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. F. Sun, Z. H. Jiang, X. W. Hu, G. Zhuang, and X. H. Wang
Magnetocumulative Generator as RF/Microwave Source Using Tesla Coil Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. M. Kekez

Charged Particle Beams and Sources
Laser-Optical and X-Ray Characterization of an Operating High-Voltage Piezoelectric Transformer in Multiple Vibrational Modes . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Gall, S. D. Kovaleski, P. Norgard, and J. W. Kwon

High Energy Density Plasmas and Their Interactions
Extended Magnetohydrodynamic Plasma Jets With External Magnetic Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Byvank, J. Chang, W. M. Potter, C. E. Seyler, and B. R. Kusse
Nonlinear Electroacoustic Waves in Fully Relativistic Astrophysical Degenerate Plasmas . . . . . . . . . . . . . . . . . . M. A. Hossen and A. A. Mamun

Industrial, Commercial, and Medical Applications of Plasmas
High Energy Efficiency Plasma Conversion of CO2 at Atmospheric Pressure Using a Direct-Coupled Microwave
     Plasma System
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. M. Mitsingas, R. Rajasegar, S. Hammack, H. Do, and T. Lee
Enhanced Degradation of Benzene in Surface/Packed-Bed Hybrid Discharge System: Optimization of the Reactor Structure and
     Electrical Parameters
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. Jiang, J. Li, K. Shang, N. Lu, and Y. Wu
The Effect of Dielectric-Barrier-Discharge Plasma Actuators on Electromagnetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F. Mirhosseini, B. G. Colpitts, R. Pimentel, and Y. de Villers
Microwave-Driven Plasma Gasification for Biomass Waste Treatment at Miniature Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. S. J. Sturm, A. N. Muñoz, P. V. Aravind, and G. D. Stefanidis

Pulsed Power Science and Technology
Hardware-in-the-Loop Emulation of Linear Induction Motor Drive for MagLev Application . . . . . . . . . . . . . . . . . . . . . B. Jandaghi and V. Dinavahi
Minimized Field Enhancement Cylindrical Air-Core High-Voltage Pulse Transformer . . . . . . . . . . . . S. C. Kim, H. Heo, C. Moon, and S. H. Nam
Optimal Design of -40-kV Long-Pulse Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. C. Kim, H. Heo, C. Moon, S. H. Nam, D. S. Kim, J. H. Kim, S. S. Oh, and J. W. Yang
Microsecond Electrical Discharge in Water in Plate-to-Plate Configuration With Nitrogen Bubble Injection . . . . . . . . . . . . . . . . . . V. Stelmashuk
A Dielectric Rod Antenna for Picosecond Pulse Stimulation of Neurological Tissue . . . . . . . . . . . . R. A. Petrella, K. H. Schoenbach, and S. Xiao

Arcs & MHD
Study of a 2-D Time-Dependent Capillary Discharge Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Hang, X. Li, J. Wu, W. Zhao, R. Li, and S. Jia

Fusion Science and Technology
Experimental Study for Comparison of H2 and Ar–H2 Gas Mixture Glow Discharge Wall Conditioning in ADITYA Tokamak . . . . . . . . . . . . . . . .
     . . . K. A. Jadeja, K. M. Patel, R. L. Tanna, D. Sangwan, K. S. Acharya, N. D. Patel, S. B. Bhatt, R. Manchanda, J. Ghosh, and Aditya Team


ANNOUNCEMENTS
Call for Papers-Special Issue for Selected Papers from EAPPC/BEAMS/MEGAGAUSS 2016
Call for Papers-Special Issue on Plasma-Assisted Technologies
Call for Papers-Special Issue on Spacecraft Charging Technology 2017


Accessibility | Privacy and Opting Out of Cookies | Nondiscrimination Policy

Copyright 2015 IEEE - All rights reserved. Use of this newsletter site signifies your agreement to the IEEE Terms and Conditions.
A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology. [Response: Read Receipt]

If you would like to be removed from this email distribution, please [Response: Unsubscribe from List].
If you have unsubscribed in error, please [Response: Subscribe to List].
To unsubscribe from all mailings, use your IEEE Account to update your "Personal Profile and Communication Preferences."

Replies to this message will not reach IEEE. Due to local email service/provider settings, random characters may appear in some instances.

Although the IEEE is pleased to offer the privilege of membership to individuals and groups in the OFAC embargoed countries, the IEEE cannot offer certain services to members from such countries.

IEEE
445 Hoes Lane
Piscataway, NJ 08854 USA
+1 800 678 4333 (toll free, US & Canada)
+1 732 981 0060 (Worldwide)

For more information or questions regarding your IEEE Membership or IEEE Account, please direct your inquiries to the IEEE Contact Center.