T-NPS Header
T-PS Home  |  Editorial Board  |  T-PS in IEEE Xplore  |   Early Access  |  Manuscript Submission
FEATURED STORIES - SEPTEMBER 2016

"Experimental Validation of Slow-Wave Phenomena in Curved Ring-Bar Slow-Wave Structure"

by Muhammed Zuboraj, Ushemadzoro Chipengo, Niru K. Nahar, and John L. Volakis


Curved ring-bar (CRB) slow-wave structure (SWS) has been presented before in order to design an SWS for high-power and wideband traveling-wave tube in S-band. It was analyzed using the coupled transmission line theory and predicted to deliver 1-MW output power across 1.8-2.4-GHz bandwidth. However, the slow-wave characteristics were not experimentally validated through measurements.

In this paper, we present ω-β measurement results to experimentally demonstrate that the CRB structure is providing the predicted slow-wave characteristics at the S-band. A novel synthetic technique is used to determine the ω-β relation using a six-period fabricated CRB structure. The measurement results exhibit a phase velocity of 0.7c-0.75c across 2-2.5 GHz with a maximum error of less than 5%. In addition, the measured on-axis interaction impedance was >43ω across the specified frequencies implying satisfactory agreement with theoretical predictions. more...
-----------------------

A PUBLICATION OF THE IEEE NUCLEAR AND PLASMA SCIENCES SOCIETY

SEPTEMBER 2016   |  VOLUME 44  |  NUMBER 9  |  ITPSBD  |  (ISSN 0093-3813)

SPECIAL ISSUE ON SYMPOSIUM ON FUSION ENGINEERING


GUEST EDITORIAL
Special Issue on Symposium on Fusion Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. P. Allain, D. N. Ruzic, M. Nieto, L. Baylor, and C. Ribeiro


SPECIAL ISSUE PAPERS
Wendelstein 7-X Program—Demonstration of a Stellarator Option for Fusion Energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . R. C. Wolf, C. D. Beidler, A. Dinklage, P. Helander, H. P. Laqua, F. Schauer, T. S. Pedersen, F. Warmer, and Wendelstein 7-X Team
The ASDEX Upgrade Program Targeting Gaps to Fusion Energy. . . . . . . . R. Neu, V. Bobkov, A. Bock, M. Bernert, M. Beurskens, A. Herrmann,
     . . . . . . . . . A. Kallenbach, P. T. Lang, J.-M. Noterdaeme, G. Pautasso, M. Reich, J. Schweinzer, J. Stober, W. Suttrop, H. Zohm, and A. Kirk
JET Program for Closing Gaps to Fusion Energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Litaudon
Pellet Injection Technology and Its Applications on ITER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . L. R. Baylor, S. K. Combs, R. C. Duckworth, M. S. Lyttle, S. J. Meitner, D. A. Rasmussen, and S. Maruyama
Heating Neutral Beams for ITER: Present Status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . M. J. Singh, D. Boilson, R. S. Hemsworth, J. Chareyre, H. Decamps, F. Geli, J. Graceffa, B. Schunke, L. Svensson, D. Shah,
     A. E. Ouazzani, M. Urbani, H. P. L. de Esch, E. Delmas, V. Antoni, G. Chitarin, G. Serianni, D. Marcuzzi, V. Toigo, P. Zaccaria, U. Fantz,
     P. Franzen, B. Heinemann, W. Kraus, M. Kashiwagi, M. Hanada, H. Tobari, M. Kuriyama, A. Masiello, and T. Bonicelli
Solidification and Acceleration of Large Cryogenic Pellets Relevant for Plasma Disruption Mitigation. . . . . . . . . . . . . . . . . . . . . . S. K. Combs,
     S. J. Meitner, T. E. Gebhart, L. R. Baylor, J. B. O. Caughman, D. T. Fehling, C. R. Foust, T. Ha, M. S. Lyttle, J. T. Fisher, and T. R. Younkin

Status of Heating and Current Drive Systems Planned for ITER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. J. Singh, Heating and Current Drive Teams at ITER Organization, European Domestic Agency,
     Japan Domestic Agency, Indian Domestic Agency, Russian Federation Domestic Agency, and United States Domestic Agency

Prototype Design of External Bypass for ITER Poloidal Field Converter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. Wang, Z. Song, and C. Li
Conceptual Design Analysis of Tungsten Monoblock Components for KSTAR Divertor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . .. . . . . . . . . . J. H. Song, K. M. Kim, K. Im, S. H. Hong, H. T. Kim, H. K. Kim, S. H. Park, B. C. Kim, H. L. Yang, and Y. S. Kim
Damage Morphologies in Targets Exposed to a New Plasma Deflagration Accelerator for ELM Simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. T. K. Loebner, T. C. Underwood, B. C. Wang, and M. A. Cappelli
Research of an Energy Processing System for Disposing Plasma Electromagnetic Energy During Disruption in Tokamak. . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Zhang, X. Li, J. Zhang, X. Bai, W. Xu, B. Yang, Z. Chen, and K. Yu
Massive Gas Injection Valve Development for NSTX-U. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. Raman, G. J. Plunkett, and W.-S. Lay
Optimization of Large Titanium Sublimation Pumps for the Neutral Beam Injection System on AUG and W7-X. . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Orozco, M. Fröschle, B. Heinemann, C. Hopf, R. Nocentini, and R. Riedl
Electromagnetic Optimization and Preliminary Mechanical Analysis of the CFETR CS Model Coil. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Liu, X. Wang, Z. Wang, D. Yin, and Y. Wu
Analyses of Low- and High-Margin Quench Propagation in the European DEMO TF Coil Winding Pack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Savoldi, R. Bonifetto, R. Zanino, and L. Muzzi
Thermal-Hydraulic Analysis for Conceptual Design of Korean HCCR TBM Set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D.-W. Lee, S. D. Park, H. G. Jin, E. H. Lee, S.-K. Kim, J. S. Yoon, K. I. Shin, and S. Cho
System Code Analysis of HELIAS-Type Fusion Reactor and Economic Comparison With Tokamaks. . . . . . . . . . . . . . F. Warmer, S. B. Torrisi,
      C. D. Beidler, A. Dinklage, Y. Feng, J. Geiger, F. Schauer, Y. Turkin, R. Wolf, P. Xanthopoulos, R. Kemp, P. Knight, H. Lux, and D. Ward

Overview and Status of Commissioning of the Wendelstein 7-X Magnet Power Supplies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Rummel, T. Moennich, F. Fuellenbach, and T. Murray
A Talbot–Lau X-Ray Deflectometer as a High-Energy Density Plasma Diagnostic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. P. Valdivia, D. Stutman, C. Stoeckl, C. S. Mileham, I. A. Begishev, J. Bromage, and S. P. Regan
Study of ICRF Ferrite Tuner. . . . . . . . . . . . . . . . . . . . . . . . P. Koert, L. Zhou, S. J. Wukitch, A. Binus, E. Fitzgerald, A. Pfeiffer, and R. Murray
Conceptual Design of the EU-DEMO Dual Coolant Lithium Lead Equatorial Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Rapisarda, I. Fernandez, I. Palermo, M. Gonzalez, C. Moreno, A. Ibarra, and E. Mas de les Valls
A Scoping Study for High-Field-Side Launch of Lower Hybrid Waves on ADX MIT. . . . . . . . . . . . . . . . . . . . . . . . . .G. M. Wallace, S. Shiraiwa,
     S. G. Baek, P. T. Bonoli, A. D. Kanojia, P. Koert, B. L. LaBombard, R. Leccacorvi, R. R. Parker, D. R. Terry, R. Vieira, and S. J. Wukitch

Design and Test of Readout Electronics for Thermocouples on Ion Beam Sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Brombin, R. Ghiraldelli, F. Molon, G. Serianni, and R. Pasqualotto
Residual Stress Generation in Brazed Tungsten Dissimilar Joints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Easton, J. Wood, S. Rahimi, A. Galloway, Y. Zhang, and C. Hardie
Helium-Implanted ODS-Fe Alloy Investigated by Positron-Annihilation Spectroscopy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. L. Gao, X. Ju, Y. Xin, Q. S. Cao, Z. M. Guo, L. P. Guo, and B. Y. Wang
Effect of the Dome on the Collisional Neutral Gas Flow in the Demo Divertor. . . . . . . . . . . . . . . . . . . . . . C. Day, S. Varoutis, and Y. Igitkhanov
Surface Ablation and Melting of Fusion Materials Simulated by Transient High Heat Flux Generated in an Electothermal Plasma Source. . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. M. Almousa, J. G. Gilligan, and M. Bourham
Reconstruction Progress of the COMPASS-D ECRH System on J-TEXT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. H. Xia, C. H. Liu, Z. J. Wang, M. Zhang, W. Zheng, J. X. Xiao, G. Zhuang, K. X. Yu, and Y. Pan
Power Amplifiers Based on SiC Technology for MHD Mode Control in Fusion Experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E. Gaio, A. Ferro, L. Novello, and M. Matsukawa
Particle Resuspension Model for Subatmospheric Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Xu, T. Jordan, and W. Breitung
Guiding Center Orbit Calculation for Evaluating the Current Density Distributions of the Electrons in Electron Cyclotron Heating on QUEST . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. M. Alam, K. Nakamura, H. Idei, M. Hasegawa,
     K. Tokunaga, K. Araki, K. Hanada, A. Fujisawa, Y. Nagashima, S. Kawasaki, H. Nakashima, A. Higashijima, F. Xia, and O. Mitarai

Brackets Without Welding for ITER ELM Coils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. H. Jun, A. Encheva, and J.-M. Martinez
Prototype Design and Test of ITER PF Converter Unit . . . . . . . . . . . . . . . Z. Song, P. Fu, J. Li, P. Wang, X. Zhang, C. Li, Y. Yang, and L. Dong
Design Optimization of the Interim Support of the ITER Lower Cryostat Thermal Shield Using a Metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. H. Noh, W. Chung, J. Lim, and B. C. Lee
Thermohydraulic Analysis of Accident Scenarios of a Fusion DEMO Reactor Based on Water-Cooled Ceramic Breeder Blanket:
     Analysis of LOCAs and LOVA
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . M. Nakamura, K. Watanabe, K. Tobita, Y. Someya, H. Tanigawa, H. Utoh, Y. Sakamoto, T. Kunugi, T. Yokomine, and W. Gulden
Thermo-Mechanical Analysis for the Conceptual Design of Korean HCCR TBM-Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. W. Lee, S. D. Park, H. G. Jin, E. H. Lee, S.-K. Kim, J. S. Yoon, K. I. Shin, and S. Cho
Progress in the Design and Testing of In-Vessel Magnetic Pickup Coils for ITER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Peruzzo, M. Brombin,
     M. F. Palumbo, W. Gonzalez, N. Marconato, A. Rizzolo, S. Arshad, Y. Ma, G. Vayakis, A. Suarez, I. Dˇ uran, L. Viererbl, and Z. Lahodová

Dummy Load Prototype Design for ITER Coil Power Supply System . . . . . . . . . . . C. Li, M. Zhang, K. X. Yu, X. Q. Qin, Z. Q. Song, and P. Fu
Modeling and Analysis of Inverter-Type High Voltage Power Supply for NBI Accelerator Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Zhang, X. Zhang, L. Xia, S. Ma, C. Wang, Y. Pan, and K. Yu
Structural Analysis at the Transition From W7-X Construction to Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . V. Bykov, J. Fellinger, F. Schauer, A. Carls, M. Köppen, P. van Eeten, H.-S. Bosch, L. Wegener, and J. Zhu
RF, Disruption, and Thermal Stress Analyses of EAST I and B Port Antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Zhou,
      W. K. Beck, P. Koert, J. Doody, R. F. Vieira, S. J. Wukitch, R. S. Granetz, J. H. Irby, Q. X. Yang, C. M. Qin, X. J. Zhang, and Y. P. Zhao

Overview of Design and Analysis Activities for the W7-X Scraper Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Lumsdaine, T. Bjorholm,
      J. Harris, D. McGinnis, J. D. Lore, J. Boscary, J. Tretter, E. Clark, K. Ekici, J. Fellinger, H. Hölbe, H. Neilson, P. Titus, and G. A. Wurden

The Integration Platform Development of System Code for CFETR . . . . . . S. Wang, M. Ye, C. Zhu, Z. Wang, S. Mao, K. Xu, G. Xu, and L. Liu
Development of the Advanced Neutronic Analysis Model for the K-DEMO With MCNP Code . . . . . . . . . . . . . . . J. S. Park, K. Im, and S. Kwon
Development and Experimental Evaluation of a Prototype of the TF Secondary Quench Detection System for KSTAR Device . . . . . Y.-O. Kim,
     H. Yonekawa, Y. Chu, K.-P. Kim, I.-S. Woo, J.-I. Song, H.-M. Lee, K.-R. Park, H.-J. Kim, Y.-G. Park, W.-S. Lee, J.-H. Lee, and Y.-M. Kim

Preliminary Design and Verification of Divertor Module of CFETR System Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Zhang, M. Ye, X. Peng, Z. Wang, S. Mao, X. Mao, X. Qian, and S. Wu



PART II OF TWO PARTS


REGULAR PAPERS
Basic Processes in Fully and Partially Ionized Plasmas
Tetrahedral Fluid Method Applied to FDTD for Simulation of Transient Behaviors of High-Energy Collisionless Plasmas. . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Haghdel, H. Abiri, M. Haghdel, and M. R. Eskandari
Quasi-Equilibrium Model for Separating the Plasma and the Conductor in the Galatea Device. . . . . . . . . . . . B. Tao, W. Tong, X. Jin, and Z. Li

Microwave Generation and Microwave-Plasma Interaction
Study of the Symmetrical Microstrip Angular Log-Periodic Meander-Line Traveling-Wave Tube. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Wang, Y. Gong, Z. Wang, Y. Wei, Z. Duan, and J. Feng
Experimental Validation of Slow-Wave Phenomena in Curved Ring-Bar Slow-Wave Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Zuboraj, U. Chipengo, N. K. Nahar, and J. L. Volakis
Hybrid Mode in Traveling-Wave Tube With Partially Plasma-Loaded Helix and Hollow Electron Beam. . . . . . . . . . . . . . . . F. Shahi and S. Saviz

Industrial, Commercial, and Medical Applications of Plasmas
Destructive Effect of DBCD Plasma on HBsAg in Human Blood and Its Impact on Erythrocyte Functions. . . . . . . . . . . . . . . . . . . . . . . X.-M. Shi,
      J.-W. Li, L.-Z. Zhu, S.-L. Chen, X.-L. Wu, G.-M. Xu, X.-X. Long, J. Liang, C.-W. Yao, W.-L. Liao, J.-F. Cai, S.-H. Zhang, and G.-J. Zhang

Efficiency Enhancement of PIC-MCC Modeling for Magnetron Sputtering Simulations Using GPU Parallelization. . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. Sohn, J. Kim, J. Bae, and J. Lee
Regeneration of Activated Carbon Spent with Phenol and Formation of Hydrogen Peroxide in a Pulsed Discharge Plasma System. . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Wang, H. Guo, Y. Liu, C. Yi, and J. Chu

Pulsed Power Science and Technology
A Variable Resistance Thyristor-Type Switch Modeling Technique. . . . . . . . . . M. B. Walls, A. Fierro, J. Dickens, J. Mankowski, and A. Neuber

Arcs & MHD
Effects of Arcing in Air on the Microstructure and Morphology of Silver-Based Contact Materials in Correlation With Their Electron
     Emission Properties
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Akbi


ANNOUNCEMENTS
Call for Papers—Special Issue for Selected Papers from EAPPC/BEAMS/MEGAGAUSS 2016


Accessibility | Privacy and Opting Out of Cookies | Nondiscrimination Policy

Copyright 2016 IEEE - All rights reserved. Use of this newsletter site signifies your agreement to the IEEE Terms and Conditions.
A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. [Response: Read Receipt]

If you would like to be removed from this email distribution, please [Response: Unsubscribe from List].
If you have unsubscribed in error, please [Response: Subscribe to List].
To unsubscribe from all mailings, use your IEEE Account to update your "Personal Profile and Communication Preferences."

Replies to this message will not reach IEEE. Due to local email service/provider settings, random characters may appear in some instances.

Although the IEEE is pleased to offer the privilege of membership to individuals and groups in the OFAC embargoed countries, the IEEE cannot offer certain services to members from such countries.

IEEE
445 Hoes Lane
Piscataway, NJ 08854 USA
+1 800 678 4333 (toll free, US & Canada)
+1 732 981 0060 (Worldwide)

For more information or questions regarding your IEEE Membership or IEEE Account, please direct your inquiries to the IEEE Contact Center.