T-NPS Header
T-PS Home  |  Editorial Board  |  T-PS in IEEE Xplore  |   Early Access  |  Manuscript Submission
FEATURED STORIES - OCTOBER 2016

"Microwave Generation in Atmospheric Air"

by Mladen M. Kekez

Two sets of experiments are described. In the first set, the ultraviolet (UV) radiation created by the spark channel is passing through the wire mesh to illuminate the structure in the resonant cavity. The UV radiation creates many radiation lines in the photoionized plasma. The current flowing in the resonant cavity is also measured. The radiations exiting the cavity are compared with the data obtained in the atomic hydrogen maser. In the second set of experiments, the spark channel discharges are formed inside the resonant cavity. When the resonant cavity was tuned to ≈1 GHz, the objective is to learn why the system gives almost the single ≈1 GHz radiation line at the output under certain conditions. The study indicates that the basic mechanism of microwave generation in atmospheric air is the microwave amplification by the stimulated emission of radiation. more...
-----------------------

A PUBLICATION OF THE IEEE NUCLEAR AND PLASMA SCIENCES SOCIETY

OCTOBER 2016   |  VOLUME 44  |  NUMBER 10  |  ITPSBD  |  (ISSN 0093-3813)
PART I OF TWO PARTS

SPECIAL ISSUE ON PULSED POWER SCIENCE AND TECHNOLOGY


GUEST EDITORIAL
Special Issue on Pulsed Power Science and Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Wetz, S. Bayne, J. O. Rossi, H. Luo, and Y. Mi


SPECIAL ISSUE PAPERS
Pulsed Power Technologies
The Influences of Low Temperature on System Performance of Inductive Pulsed Power Supplies . . . . . . . . . . . . . . . . . X. Yu, J. Ding, and Z. Li
A Novel Configuration of Modular Bipolar Pulse Generator Topology Based on Marx GeneratorWith Double Power Charging . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Yao, S. Dong, Y. Zhao, Y. Mi, and C. Li
Development of High dB/dt Pulsed Magnetic Field Generator Based on Printed Circuit Board Archimedes Spiral Coil for Biomedical
     Applications
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Mi, X. Tang, S. Rui, Y. Chu, C. Bian, C. Yao, and C. Li
Superfast Thyristor-Based Switches Operating in Impact-Ionization Wave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. I. Gusev, S. K. Lyubutin, S. N. Rukin, and S. N. Tsyranov
A Pulsed Modulator Combined With Very High PRF Photoconductive Switches to Build a Self-Scanning UWB Radiation Source . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . L. Pécastaing, A. S. De Ferron, V. Couderc, B. M. Shalaby, R. Négrier, M. Lalande, J. Andrieu, and V. Bertrand
Experimental Study on the Current Transmission Efficiency for the Transition Structure of Vacuum Transmission Line MITL on
     Flash-II Accelerator
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. Zhang, H. Yang, J. Sun, Y. Hu, D. Lai, Y. Li, H. Wang, P. Cong, and A. Qiu
Development and Simulation of a Compact Picosecond Pulse Generator Based on Avalanche Transistorized Marx Circuit and Microstrip
     Transmission Theory
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Li, R. Zhang, C. Yao, Y. Mi, J. Tan, S. Dong, and L. Gong
High-dB/dt Square-Pulse Excitation of Finemet Magnetic Material . . . . . . . . . . . . . . . . . . . . . . . . . . . A. B. Howard, R. D. Curry, and R. A. Burdt
High Voltage Generation With Transversely Shock-Compressed Ferroelectrics: Breakdown Field on Thickness Dependence . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . S. I. Shkuratov, J. Baird, V. G. Antipov, E. F. Talantsev, W. S. Hackenberger, A. H. Stults, and L. L. Altgilbers
Design and Simulation Study of MITL for a Multistage FLTD in a Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. Zhang, A. Qiu, Y. Li, H. Wang, J. Sun, Y. Hu, F. Sun, and P. Cong
Repetitive High-Voltage All-solid-state Marx Generator for Excimer DBD UV Sources . . . . . . . . . . . . . . . .Y. Wang, L. Tong, Q. Han, and K. Liu
Picosecond-Range Avalanche Switching of High-Voltage Diodes: Si Versus GaAs Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. I. Brylevskiy, I. A. Smirnova, A. V. Rozhkov, P. N. Brunkov, P. B. Rodin, and I. V. Grekhov
Characterization of an n-Type 4-kV GTO for Pulsed Power Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Flack, C. Hettler, and S. Bayne
The Sources of Pulse Current Based on Explosive Magnetic Generators for Mobile Testing Facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. V. Shurupov, A. V. Koslov, M. A. Shurupov, V. E. Zavalova, and V. E. Fortov
Array Microhollow Cathode (MHC) Discharges With Pretrigger Device Triggered by Nanosecond Pulses at Atmospheric Pressure . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Zhang, K. Liu, and J. Qiu
Bipolar Modulation of the Output of a 10-GW Pulsed Power Generator . . . . . . . . . . . . . . M. Wang, B. M. Novac, L. Pécastaing, and I. R. Smith
Characterization of Ni-Zn Ferrite Double-Positive Metamaterials for Pulsed Power Systems . . . . . . A. M. Pearson, R. D. Curry, and K. M. Noel
Influences of Cell-Driving Sequences on Performances of Magnetically Insulated Induction Voltage Adders . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Hu, F. Sun, J. Zeng, A. Qiu, P. Cong, J. Yin, J. Sun, and H. Wei
Nonlinear Frequency Characteristic of Multiple Series Gaps With Voltage-Dividing Network and Its Application in HVDC Circuit Breaker . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Li, Y. Cheng, M. Peng, B. Yu, Y. Liu, Z. Yuan, and P. Yuan
Parallel Triggering and Conduction of Rail-Gap Switches in a High-Current Low-Inductance Crowbar Switch . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Grabowski, J. H. Degnan, J. V. Parker, J. F. Camacho, S. K. Coffey,
             R. K. Delaney, M. T. Domonkos, T. P. Intrator, A. G. Lynn, J. McCullough, E. L. Ruden, W. Sommars, T. E. Weber, and G. A. Wurden
A Fast and Series-Stacked IGBT Switch With Balanced Voltage Sharing for Pulsed Power Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Zarghani, S. Mohsenzade, and S. Kaboli
A Multiparameter Adjustable, Portable High-Voltage Nanosecond Pulse Generator Based on Stacked Blumlein Multilayered PCB Strip
      Transmission Line
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Mi, J. Wan, C. Bian, Y. Zhang, C. Yao, and C. Li
A Test Environment for Power Semiconductor Devices Using a Gate-Boosting Circuit . . . . . . . . . . . . . . M. Hochberg, M. Sack, and G. Mueller
Relationship Between STRETCH Meat Grinder Circuit Performances and Inductor Parameters . . . . . . . . . . . . . . . . . . Z. Li, X. Yu, and J. Ding
Mathematical Derivation of Cell-Driving-Jitter Effects on the Risetime of IVA-Output Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Hu, J. Zeng, F. Sun, A. Qiu, P. Cong, J. Yin, J. Sun, and H. Wei
2.8-MV Low-Inductance Low-Jitter Electrical-Triggered Gas Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Yin, F. Sun, A. Qiu, T. Liang, X. Jiang, T. Dang, J. Zeng, and Z. Wang
Theoretical Analysis and Improvement on Pulse Generator Using BJTs as Switches . . . . . . . . . . . Z. Li, P. Li, J. Rao, S. Jiang, and T. Sakugawa
Seven-Level Unipolar/Bipolar Pulsed Power Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. L. Rocha, J. F. Silva, and L. M. Redondo

Pulsed Power Applications
Impact of High-Magnitude Pulsed Currents and Magnetic Fields on Metallic Corrosion . . . . . . . . . . . . . C. G. Gnegy-Davidson and D. Wetz, Jr.
A Compact Microsecond-Pulse Generator Used for Surface Dielectric Barrier Discharges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Shao, L. Wang, C. Zhang, Y. Zhou, L. Han, X. Xu, and E. Schamiloglu
Changes in the Power Discharge in a Plasma Reactor Using Porous Versus Solid Dielectric Barriers and Meshes Electrodes . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E. Gnapowski and S. Gnapowski
Hydroxyl Radicals and Hydrogen Peroxide Formation at Nonthermal Plasma-Water Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Y. Zhao, T. Wang, M. P. Wilson, S. J. MacGregor, I. V. Timoshkin, and Q. C. Ren
Study of the Relationship Between Maximum Specific Energy and Wire Diameter During Electrical Explosion of Tungsten Wires . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H.-T. Shi, X.-B. Zou, and X.-X. Wang
Differences in the Effects of Duty Cycle and Interval on Cell Response Induced by High-Frequency Pulses Under Different Pulse
     Durations
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Yao, Y. Zhao, S. Dong, Y. Lv, H. Liu, L. Tang, L. He, and X. Wang
Statistical Analysis of Pulsed Microdischarges and Ozone Generation in Dielectric Barrier Discharges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Huang, Y. Zhou, T. Wang, I. V. Timoshkin, M. P. Wilson, S. J. MacGregor, and M. J. Given
TiO2-Coated Electrodes for Pulsed Electric Field Treatment of Microorganisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . S. Qin, I. V. Timoshkin, M. Maclean, S. J. MacGregor, M. P. Wilson, M. J. Given, T. Wang, and J. G. Anderson
Optimization of Ozone Generation by Investigation of Filament Current Characteristics Under Dielectric Barrier Discharge . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Zhou, G. Huang, T. Wang, S. J. MacGregor, Q. Ren, M. P. Wilson, and I. V. Timoshkin
A Study of Energy Partition During Arc Initiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . S. G. Koutoula, I. V. Timoshkin, M. D. Judd, S. J. MacGregor, M. P. Wilson, M. J. Given, T. Wang, and E. I. Harrison
Oxidation and Biodecontamination Effects of Impulsive Discharges in Atmospheric Air . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Li, I. V. Timoshkin, M. Maclean S. J. MacGregor, M. P. Wilson, M. J. Given, T. Wang, and J. G. Anderson
Impulsive Discharges in Water: Acoustic and Hydrodynamic Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Y. Sun, I. V. Timoshkin, M. J. Given, M. P. Wilson, T. Wang, S. J. MacGregor, and N. Bonifaci
Surfactant Treatment Using Nanosecond Pulsed Powers and Action of Electric Discharges on Solution Liquid . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Morimoto, K. Shimizu, K. Teranishi, and N. Shimomura
Investigation of the Influence of Droplets to Streamer Discharge in Water Treatment by Pulsed Discharge in Air Spraying Water
     Droplets
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Minamitani and T. Yamada
Analytic Model to Estimate Thermonuclear Neutron Yield in Z-Pinches Using the Magnetic Noh Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. A. Agnew, J. T. Cassibry, and B. H. Winterling
Ozone Production by Streamer Discharges Using Nanosecond Pulsed Powers and Coaxial Reactor With Tensioned Inner Electrode . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Morimoto, T. Ninomiya, T. Ikemoto, K. Teranishi, and N. Shimomura
Experimental Study on Sound Characteristics Produced by DC Corona and Pulsed Discharges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Ren, J. Wang, P. Yan, T. Shao, C. Zhang, and S. Zhang
The Effect of Scale-Up of Pulsed Corona Discharge for Treatment of Pollution Water Sprayed in Discharge Gap . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Sugai, P. T. Nguyen, T. Maruyama, A. Tokuchi, and W. Jiang

Electromagnetic Launcher
A Multisegmented Long-Stroke Dual-Stator Pulsed Linear Induction Motor for Electromagnetic Catapult . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Lu, W. Ma, X. Zhang, X. Long, and S. Tan
Electromagnetic-Mechanical Characteristics Study of a High-Speed Electromagnetic Launcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F. Yang, Z. Zhao, Y. Liu, Y. Wu, Z. Chen, H. Sun, and M. Rong

High Power Particle Beams and Electromagnetic Radiations
Developmental Aspects of Microwave–Plasma Interaction Experiments: Phase-1 . . . . . . . . . V. P. Anitha, P. J. Rathod, R. Singh, and D. V. Giri
Simulation Studies of Distributed Nonlinear Gyromagnetic Lines Based on LC Lumped Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F. S. Yamasaki, E. Schamiloglu, J. O. Rossi, and J. J. Barroso
A Switched Oscillator Geometry Inspired by a Curvilinear Space—Part I: DC Considerations . . . . . . . . . . . . . . . . . . . . . . F. Vega and F. Rachidi
A Switched Oscillator Geometry Inspired by a Curvilinear Space—Part II: Electrodynamic Considerations . . . . . . . . . . . . F. Vega and F. Rachidi
Influence of Input Pulse Shape on RF Generation in Nonlinear Transmission Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E. G. L. Rangel, J. J. Barroso, J. O. Rossi, F. S. Yamasaki, L. P. Silva Neto, and E. Schamiloglu
Power Combiner for High Power Cerenkov Devices . . . . . . . . . . . . . . . . . . . A. Elfrgani, H. Seidfaraji, S. C. Yurt, M. I. Fuks, and E. Schamiloglu
Numerical Assessment of Secondary Electron Emission on the Performance of Rising-Sun Magnetrons With Axial Output . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Majzoobi, R. P. Joshi, A. A. Neuber, and J. C. Dickens



PART II OF TWO PARTS


REGULAR PAPERS
Basic Processes in Fully and Partially Ionized Plasmas
Alpha to Gamma Mode Transitions in Pulse-Modulated Radio Frequency Atmospheric Pressure Glow Discharges . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. G. Huo and Z. F. Ding
Ozone Production With Dielectric Barrier Discharge: Effects of Power Source and Humidity . . . . . . X. Zhang, B. J. Lee, H. G. Im, and M. S. Cha
The Hulthén Potential Model for Hydrogen Atoms in Debye Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. K. Bahar, A. Soylu, and A. Poszwa

Microwave Generation and Microwave-Plasma Interaction
A High-Power Waveguide Phase Shifter With Periodic RF Chokes for Subgigawatt Nanopulse Transmission . . . . . . . . . J.-H. Choi and Y.-H. Kim
Operational Limitation and Instability of a Microwave-Induced Microplasma Enclosed in a Microcavity at Low Gas Pressures . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Tang, X. Yu, Z. Wang, S.-T. Tu, and Z. Wang
A Compact All-Solid-State Self-Compressing Low-to-High Power Converting RF Pulse Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Samizadeh Nikoo and S. M.-A. Hashemi
Microwave Generation in Atmospheric Air . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. M. Kekez
Design and Stability Studies of Second-Harmonic Gyro-TWT Amplifier Using Wedge-Shaped Lossy Ceramic Rod-Loaded Mode
     Selective RF Interaction Circuit
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Arora, M. Thottappan, and P. K. Jain
Theoretical Study of a Broadband Quasi-Optical Mode Converter for Pulse Gyrotron Device . . . . . . . . . . . . . . . C.-H. Du, X.-B. Qi, and P.-K. Liu
The Plasma Background Effect on Time Growth Rate of Terahertz Hybrid Modes in an Elliptical Metallic Waveguide With Two Electron
     Beams as Energy Source
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Safari and B. Jazi
Studies of a Leaky-Wave Phased Array Antenna for High-Power Microwave Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Guo, W. Huang, C. Chang, J. Li, Y. Liu, and R. Meng

Charged Particle Beams and Sources
Child-Langmuir Law for a Planar Diode Filled With a Two-Layer Dielectric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. E. Dubinov and I. N. Kitayev

High Energy Density Plasmas and Their Interactions
A Proposed 100-kHz fs Laser Plasma Hard X-Ray Source at the ELI-ALPS Facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Papp, R. Polanek, Z. Lecz, L. Volpe, A. Peralta Conde, and A. A. Andreev

Pulsed Power Science and Technology
Toroidal Field Electromagnetic Launcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Xue, T. Shu, Z. Yang, and G. Feng
Particle-in-Cell Modeling of Axial and Coaxial Virtual Cathode Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Saxena, A. Roy, K. V. Kanakgiri, S. J. Petkar, F. S. Kazi, and N. M. Singh
Quasi-Optical Mode Converter for a 0.42-THz TE26 Mode Pulsed Gyrotron Oscillator . . . . . . . W. Wang, T. Song, D. Liu, Q. Zhuang, and S. Liu
Dynamics of Laser Triggered, Gas-Insulated Spark Gaps During Repetitive Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. F. Wolford, M. C. Myers, F. Hegeler, and J. D. Sethian
Characterization of a Drift-Step-Recovery Diode Based on All Epi-Si Growth . . . . . . . A. S. Kesar, Y. Sharabani, I. Shafir, S. Zoran, and A. Sher
High-Voltage, High-Frequency Pulse Generator for Nonequilibrium Plasma Generation and Combustion Enhancement . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. D. G. Evans, J. M. Bergthorson, and S. Coulombe

Arcs & MHD
Study on Pantograph Arcing in a Laboratory Simulation System by High-Speed Photography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. Wei, J. Wu, G. Gao, Z. Gu, X. Liu, G. Zhu, and G. Wu
Heat Exchange and Voltage Drop in Welding Arc Column . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. L. Rossi, V. Ponomarev, and A. Scotti
Influence of the AMF Arc Control on Voltage Distribution of Double-Break VCBs . . . . . M. Liao, G. Ge, X. Duan, J. Huang, Z. Huang, and J. Zou
Video Spectroscopy of Vacuum Arcs During Transition Between Different High-Current Anode Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . A. Khakpour, S. Gortschakow, D. Uhrlandt, R. Methling, S. Franke, S. Popov, A. Batrakov, and K.-D. Weltmann

Fusion Science and Technology
Structural Analysis of High-Field-Side RF Antennas During a Disruption on the Advanced Divertor eXperiment (ADX) . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . J. Doody, B. LaBombard, R. Leccacorvi, S. Shiraiwa, R. Vieira, G. M. Wallace, S. J. Wukitch, and J. H. Irby

Special Issue on High Power Microwave Generation 2016
Metamaterial-Enhanced Resistive Wall Amplifier Design Using Periodically Spaced Inductive Meandered Lines . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Rowe, N. Behdad, and J. H. Booske
Numerical Simulation and Experiment of Hardening Behaviors in Unsaturated Polyester Resin Artificial Marble Blocks Under Microwave
     Radiation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Feng, H. Ding, D. Gao, and Z. Zhang

Special Issue on Selected Papers from SOFE 2015
A Preliminary Development of the K-DEMO Divertor Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Im, S. Kwon, and J. S. Park
EAST Contributions to Closing CFETR Physics Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Ding, B. Wan, L. Wang, Y. Sun, and B. Lyu
A Methodology for Accident Analysis of Fusion Breeder Blankets and Its Application to Helium-Cooled Lead-Lithium Blanket . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Panayotov, Y. Poitevin,
               A. Grief, M. Trow, M. Dillistone, J. T. Murgatroyd, S. Owen, K. Peers, A. Lyons, A. Heaton, R. Scott, B. J. Merrill, and P. Humrickhouse

Accessibility | Privacy and Opting Out of Cookies | Nondiscrimination Policy

Copyright 2016 IEEE - All rights reserved. Use of this newsletter site signifies your agreement to the IEEE Terms and Conditions.
A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. [Response: Read Receipt]

If you would like to be removed from this email distribution, please [Response: Unsubscribe from List].
If you have unsubscribed in error, please [Response: Subscribe to List].
To unsubscribe from all mailings, use your IEEE Account to update your "Personal Profile and Communication Preferences."

Replies to this message will not reach IEEE. Due to local email service/provider settings, random characters may appear in some instances.

Although the IEEE is pleased to offer the privilege of membership to individuals and groups in the OFAC embargoed countries, the IEEE cannot offer certain services to members from such countries.

IEEE
445 Hoes Lane
Piscataway, NJ 08854 USA
+1 800 678 4333 (toll free, US & Canada)
+1 732 981 0060 (Worldwide)

For more information or questions regarding your IEEE Membership or IEEE Account, please direct your inquiries to the IEEE Contact Center.