<
T-NPS Header
T-PS Home  |  Editorial Board  |  T-PS in IEEE Xplore  |   Early Access  |  Manuscript Submission
FEATURED STORIES - MAY 2015

"Effects of Sextupolar Undulator Magnetic Field Contributions on Inverse Free Electron Laser Accelerator"

by Roma Khullar, Ganeswar Mishra, and Geetanjali Sharma


In this paper, we include the important effects of sextupolar field contributions on saturation gain and length of a linear polarized undulator driven inverse free electron laser (IFEL) that arise when the electrons are injected off axis. The modified IFEL equations are derived and analyzed. Both the accelerating gradient and the saturation length of the IFEL are influenced by the imperfect beam trajectory. For a fixed laser wavelength, the effects are more pronounced more...

-----------------------

"Microwave Power and Phase Measurements on a Recirculating Planar Magnetron"

by Matthew A. Franzi, Geoffrey B. Greening, Nicholas M. Jordan, Ronald M. Gilgenbach, David H. Simon, Y. Y. Lau, Brad W. Hoff and John Luginsland


Calibrated microwave power and phase measurements are presented for the first recirculating planar magnetron prototype consisting of two coupled six-cavity 1-GHz planar cavity arrays. The results are presented for a solid cathode and two mode-control cathodes (MCCs) with aluminum or velvet electron emitters. The measurements were conducted using a prototype coaxial microwave power extraction scheme. The experimental operating parameters included more...

-----------------------

"Effect of Electron Pressure on Debris-Ambient Coupling in a Magnetized Collisionless Shock"

by Bo Ram Lee, Stephen E. Clark, Dieter H. H. Hoffmann, and Christoph Niemann

The effect of various electron pressure models on the debris-ambient coupling in a magnetized collisionless shock is demonstrated with a 2-D hybrid code. The simulation specifically models the regime of laboratory shocks launched by laser ablation into a magnetized ambient plasma. A two-electron-fluid model is employed with different polytropic coefficients to vary the electron temperature and pressure gradients and investigate their effects on the shock dynamics more...

-----------------------

A PUBLICATION OF THE IEEE NUCLEAR AND PLASMA SCIENCES SOCIETY

MAY 2015   |  VOLUME 43  |  NUMBER 5  |  ITPSBD  |  (SSN 0093-3813)
PART I OF TWO PARTS

SPECIAL ISSUE ON ELECTROMAGNETIC LAUNCHERS


GUEST EDITORIAL
The Past, Present, and Future of Electromagnetic Launch Technology and the IEEE International EML Symposia . . . . . . . . . . . . . . . . . H. D. Fair
Symposium Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .H. D. Fair and D. A. Wetz

SPECIAL ISSUE PAPERS
Armatures/Projectiles
Design and Testing a Novel Armature on Railgun . . . . . . . . . . . .W. Guo, T. Zhang, W. Shao, D. Yang, Z. Su, Y. Chen, H. Yu, R. Ren, and J. Li
Current Concentration of Large-Caliber C-Shaped Armature in Square Railgun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .L. Tang, J. He, L. Chen, S. Xia, D. Feng, J. Li, and P. Yan
Aerothermal Load and Drag Force Analysis of the Electromagnetically Launched Projectiles Under Rarefied Gas Conditions . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. Sengil and U. Sengil
Optimizing Study on the Concave Arc Surfaced C-Shaped Armature With Medium and Small Calibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .L. Tang, L. Chen, J. He, S. Xia, D. Feng, J. Li, and P. Yan
Experimental Study of Armature Melt Wear in Solid Armature Railgun . . . . . . . . . . . . . . . . L. Chen, J. He, Z. Xiao, S. Xia, D. Feng, and L. Tang
Acceleration of Aluminum Booster Projectiles With PEGASUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Hundertmark, D. Simicic, and G. Vincent
Further Experiments With an UHF Radio Link to a Railgun Projectile . . . . . . . . . . . . . . .S. Hundertmark, Y. Schaeffer, D. Simicic, and G. Vincent
Thermal Protection, Aerodynamics, and Control Simulation of an Electromagnetically Launched Projectile . . . . . . . . . . D. Lancelle and O. Božić

Applications
The Use of a Railgun Facility for Dynamic Fracture of Brittle Materials . . . . . . . . . . . . . M. Schneider, G. Vincent, J. D. Hogan, and J. G. Spray
Effect of Electric Current on Shaped-Charge Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . .G. A. Shvetsov, A. D. Matrosov, and S. V. Stankevich
Optimization of the Spacing Between the Two Plates of Passive Electromagnetic Armor . . . . . . . . . . . . . . Y. Huang, Y. Cao, G. Zhou, and X. Sun
Design Considerations for an Electromagnetic Railgun Firing Intelligent Bursts to Be Used Against Antiship Missiles . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Gallant, T. Vancaeyzeele, B. Lauwens, B. Wild, F. Alouahabi, and M. Schneider
Thermal Performance Study on Pulsed Inductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Y. Yu, J. Dong, and J. Zhang
Enabling Scientific Collaboration and Discovery Through the Use of Data Standardization . . . . . . . . . . . . . . . . . . . S. H. Myers and B. M. Huhman
A Scenario for a Future European Shipboard Railgun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .S. Hundertmark and D. Lancelle


Coilguns

Analysis of Parameter Sensitivity of Induction Coil Launcher Based on Orthogonal Experimental Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Xiang, B. Lei, Z. Li, K. Zhao, Q. Lv, Q. Zhang, and Y. Geng
Design and Evaluation of the Driving Coil on Induction Coilgun . . . . . . . . . . . . . . T. Zhang, W. Guo, Z. Su, B. Cao, R. Ren, M. Li, X. Ge, and J. Li
Geometry and Power Optimization of Coilgun Based on Adaptive Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .X. Tao, S. Wang, Y. Huangfu, S. Wang, and Y. Wang
Investigation of Armature Capture Effect on Synchronous Induction Coilgun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Su, T. Zhang, W. Guo, J. Yue, H. Zhang, W. Fan, X. Sun, and K. Huang
Electromechanical Performance of Rails With Different Cross-Sectional Shapes in Railgun . . . . . . . . . . . . . L. Jin, B. Lei, Q. Zhang, and R. Zhu
Theory and Circuit Model of Brush Commutation in Helical Coil Electromagnetic Launchers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Hou, Z. Liu, J. Zhang, L. Yang, Z. Shen, J. Ouyang, and D. Yang
Inductances and Phase Coupling Analysis of Tubular Permanent Magnet Machines With Transverse Flux Configuration. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Q. Wang, B. Zhao, J. Zhang, Y. Li, J. Zou, and H. Zhao
Modeling of the Gyroscopic Stabilization in a Traveling-Wave Multipole Field Electromagnetic Launcher via an Analytical Approach . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Musolino, M. Raugi, R. Rizzo, and E. Tripodi
Stabilization of a Permanent-Magnet MAGLEV System via Null-Flux Coils . . . . . . . . . . . . . . . . .A. Musolino, M. Raugi, R. Rizzo, and E. Tripodi
Design Considerations of Tubular Transverse Flux Linear Machines for Electromagnetic Launch Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Q. Wang, J. Hu, J. Zhang, C. Liu, Y. Li, J. Zou, and H. Zhao
Analysis of Cumulative Damage Failure for Driving Coil in Coilgun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Y. Zhang, W. Qin, and J. Ruan
3-D FEM Analysis of a Novel Magnetic Levitation System . . . . . . . . . . . . . . . . . . . . . . . . . . . . U. Hasirci, A. Balikci, Z. Zabar, and L. Birenbaum
Demonstration of a Reversible Helical Electromagnetic Launcher and Its Use as an Electronically Programmable Mechanical Shock Tester. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T. G. Engel, E. J. Timpson, and M. J. Veracka
The Voltage-Current Scaling Relationship and Impedance of DC Electromagnetic Launchers . . . . . . . . . . . . . . . . . T. G. Engel and M. J. Veracka
Influence of Magnetic Structure on Electromagnetic and Dynamic Properties for LPMBLDCM . . . . . . . . . . . . . . . H. Li, X. Li, K. Zhao, and Z. Li


Computational Techniques

Numerical Estimation of Arc Plasma Thermodynamic Parameters of Electromagnetic Macroparticles Launcher . . . . . . . . . . . . . . A. V. Plekhanov
Variable Mapping Method With Nonmatching Meshes in 3-D Finite-Element Analysis of Coupled Electromagnetic-Structural Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Zhang, W. Qin, and J. Ruanoi

Diagnostics
Diagnostics for Kinematics on MTF at NRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .S. R. Douglass, R. R. Reid, R. A. Meger, J. M. Neri, R. L. Cairns, III, C. Carney, and B. M. Huhman
In Situ Measurement of Strain and Temperature for Railgun Launcher Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. B. Hoffman, T. L. Haran, J. C. James, R. B. Vaughan, C. W. Lamb, and N. Meraz
Measurement of Solid Armature's In-Bore Velocity Using B-Dot Probes in a Series-Augmented Railguns. . . . . . . . . . . . S. Song and C. Cheng

Electrothermal-Chemical
Plasma Ignition Response for LOVA Gun Propellant at Low Loading Densities . . . . . . . . . . . D. Äberg, P. Hermansson, A. Sättler, and D. Rakus

EMALS
Research on a New Accurate Thrust Control Strategy for Linear Induction Motor . . . . . . . . . . . . . . X. Qiwei, S. Cui, Q. Zhang, L. Song, and X. Li
Optimal Design of EMALS Based on a Double-Sided Tubular Linear Induction Motor . . . . . . . . . . . A. Musolino, M. Raugi, R. Rizzo, and M. Tucci
A Fault-Tolerant Control Strategy for Six-Phase Transverse Flux Tubular PMLM Based on Synthetic Vector Method . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Xu, H. Yan, and J. Zou
Multiobjective Optimal Design of Switched Reluctance Linear Launcher . . . . . . . . . . . . . . . . . . . . . . . . . S. Song, M. Zhang, L. Ge, and L. Wang
A Variable Pole Pitch Linear Induction Motor for Electromagnetic Aircraft Launch System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .M. Shujun, C. Jianyun, S. Xudong, and W. Shanming

Power Conditioning
Pulsed Power Options for Large EM Launchers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. R. McNab
Electromagnetic Launch Experiments Using a 4.8-MJ Pulsed Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . K.-S. Yang, S.H. Kim, B. Lee, S. An, Y.H. Lee S. H. Yoon, I. S. Koo, Y. S. Jin, Y. B. Kim, J. S. Kim, and C. Cho
Modeling and Circuit Analysis of an Electromagnetic Launcher System for a Transient Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .S.H. Kim, S. An, B. Lee, Y.H. Lee, and K.S. Yang
Design and Simulation of a Novel Brushless Doubly Fed Alternator for the Pulse Capacitor Charge Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Cheng, Z. Lou, Q. Xin, X. Wang, C. Ye, X. Xie, and Y. He
Design of the Halbach Hybrid-Excitation Compulsator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .S. Wu, S. Cui, and W. Zhao
Modeling and Analysis of Homopolar Motors and Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T. G. Engel, and E. A. Kontras
High-Voltage Repetition-Frequency Charging Power Supply for Pulsed Laser . . . . . . . . . . . . . . . . . . . . K. Liu, R. Fu, Y. Gao, Y. Sun, and P. Yan
Impacts of Commutation Voltage Drop on Self-Exciting Air-Core Pulsed Alternator . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Zhang, C. Ye, and K. Yu
A Flexible Waveform Conditioning Strategy of an Air-Core Pulsed Alternator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .S. Cui, X. Li, and X. Zhao
Optimized Design and Simulation of an Air-Core Pulsed Alternator . . . . . . . . . . . . . . . . . . . . . . . . . . C. Ye, K. Yu, H. Zhang, L. Tang, and X. Xie
Risk Evaluation for Hybrid Excitation Compulsator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Wu, X. Wang, S. Cui, and W. Zhao
Transient Analysis of Air-Core Pulsed Alternators in Self-Excitation Mode . . . . . . . . . . . . . . . . . . . . . .X. Xie, K. Yu, C. Ye, L. Tang, and H. Zhang
Synchronization of Multiple Pulsed Alternators Discharging Into an EM Launcher . . . . . . . S. Pratap, R. Zowarka, T. Hotz, S. Pish, and B. Murphy
Design and Characterization of an Actively Controlled Hybrid Energy Storage Module for High-Rate Directed Energy Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. J. Cohen, D. A. Wetz, Jr., J. M. Heinzel, and Q. Dong
Design and Analysis of a Two-Phase Two-Axis-Compensated Compulsator . . . . . . . . . . . . . . . . . . . . . . . . . W. Zhao, S. Wu, L. Song, and S. Cui
Study on the System Efficiency of the Capacitive Pulsed-Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .C. Gong, X. Yu, and X. Liu
Capacity Fade of 26650 Lithium-Ion Phosphate Batteries Considered for Use Within a Pulsed-Power System's Prime Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .D. A. Wetz, B. Shrestha, S. T. Donahue, D. N. Wong, M. J. Martin, and J. Heinzel
Structural Parameter Optimization of Inductors Used in Inductive Pulse Power Supply . . . . . . . . . . . . . . . . . . . . . . Z. Li, X. Yu, S. Ma, and Y. Sha
Analytical Calculation of Synchronous Reactances of Homopolar Inductor Alternator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Lou, Y. Cheng, Y. He, Q. Shen, X. Xie, and K. Yu
Discussion on the Discharging Effects of Two STRETCH Meat Grinder Modules With Different Triggering Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .X. Yu, H. Liu, J. Li, Z. Li, and P. Liu
System Implementation and Testing of the STRETCH Meat Grinder With ICCOS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Yu, S. Ma, and Z. Li
Study on the Collaborative Triggering of Multiple STRETCH Meat Grinder With ICCOS Modules . . . . . . . . . X. Yu, H. Liu, J. Li, Z. Li, and P. Liu
Determining Key Parameters for the STRETCH Meat Grinder Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .S. Ma, X. Yu, and Z. Li
Parameter Analysis and Optimized Configuration of the PFU for Inductive Storage Systems . . . . . . . . . . . . . . . . . . . . . . . .S. Ma, X. Yu, and Z. Li
Electromagnetic Shields of the Air-Core Compulsator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Z. Weiduo, S. Wu, C. Shumei, and W. Xuejiao

Railguns
The Effect of Geometric Enhancement on the Magnetic Saw Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . A. J. Sitzman, F. Stefani, and D. L. Bourell
Structural Mechanics of Railguns With Open Barrels and Elastic Supports: The Influence of Multishot Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .R. Stonkus, J. Račkauskas, M. Schneider, and R. Kačianauskas
Modeling of Electromagnetic Rail Launcher System Based on Multifactor Effects . . . . . . . . . . . . . . . . . . . . . . . . . Y. Zhou, D. Zhang, and P. Yan
Physical Principle and Relevant Restraining Methods About Velocity Skin Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Q.A. Lv, H.J. Xiang, B. Lei, Q. Zhang, K.Y. Zhao, Z.Y. Li, and Y.C. Xing
Study of Properties of the Double-Deck Rail in the Electromagnetic Launching System . . . . . . . . . . . . . L. Yang, J. Nie, Q. Jiao, J. Li, and M. Ren
Electromagnetic Field Effect and Analysis of Composite Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. T. Tzeng and K.-T. Hsieh
Effect of Armature and Rails Resistivity Profile on Rail's Electromagnetic Force and Armature Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Keshtkar, A. Rabiei, and L. Gharib
Optimization of Electromagnetic Railgun Based on Orthogonal Design Method and Harmony Search Algorithm . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Chao, Y. Yan, P. Ma, M. Yang, and Y. W. Hu
Using the SR3-60 Railgun in Augmented Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Vincent and S. Hundertmark
Dynamic Performances of the Electromagnetic Rail Launcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Ying, X. Rong, Y. Weiqun, C. Wenping, Y. Ping, L. Mancheng, X. Keyu, and W. Xianbin
Analysis of Transient Current Distribution in Copper Strips of Different Structures for Electromagnetic Railgun . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y.C. Xing, Q.A. Lv, B. Lei, H.J. Xiang, R.G. Zhu, and C. Liu
Evaluating Material Performance Between High-Current Contacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Hester, L. Compton, M. Young, D. Shores, D. Wise, A. M. Iglesias, and J. Mejeur
Block Diagram Model for the Simulation of an Electromagnetic Rail Accelerator System . . . . . . . . . . . . . T. Siaenen, M. Schneider, and J. Hogan
Study of Some Influencing Factors of Armature Current Distribution at Current Ramp-Up Stage in Railgun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .L. Tang, J. He, L. Chen, S. Xia, D. Feng, J. Li, and P. Yan
An Approach for Eddy-Current Calculation in Railguns Based on the Finite-Element Method . . . . . . . . . . . . P. Zuo, Y. Geng, J. Li, and J. Yuan
A Multiphysics Theory for the Static Contact of Deformable ConductorsWith Fractal Rough Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .J. G. Michopoulos, M. Young, and A. Iliopoulos
Skin Effect Analysis for Pulse Current in the PEA Based on Frequency Domain Method . . . . . . . . . . . . . . . . . . . .X. Yuan, B. Lei, Z. Li, and W. Qi
The Modular Augmented Staged Electromagnetic Launcher Operated in the Energy Storage Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .M. Roch, S. Hundertmark, M. Löffler, and P. Zacharias
Simulation and Test Study of Bores of Different Structures of Electromagnetic Launcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Q. Zhang, J. Li, S. Li, P. Liu, R. Cao, L. Chen, and W. Yuan
Resonant Shield Concept as Alternative Solution in Railguns . . . . . . . . . . . . . M. Bologna, M. Marracci, R. Micheletti, M. Schneider, and B. Tellini
A Railgun Test Bench and Standardized Methodology for Muzzle Voltage Noise Analysis . . . . . . . . . . . . . . . . . . . . .N. M. Rada, and T. G. Engel
Railgun With Steel Barrel Sections and Thermal Management System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. A. Proulx
An Investigation Into Muzzle Velocity Repeatability of a Railgun . . . . . . . . . . . . . . . .Y. He, S. Song, Y. Guan, C. Cheng, W. Dai, X. Qiu, and Y. Li
Novel Study of the Rail's Geometry in the Electromagnetic Launcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. S. Bayati and A. Keshtkar
Investigations of the Armature-Rail Contact Pressure Distribution in a Railgun . . . . . .D. Feng, J. He, S. Xia, L. Chen, L. Tang, J. Li, , and P. Yan




PART II OF TWO PARTS


REGULAR PAPERS

Microwave Generation and Microwave-Plasma Interaction
Ku-Band Rectangular Waveguide Wide Side Dimension Adjustable Phase Shifter . . . . . . . .Y.M. Yang, C.W. Yuan, G.X. Cheng, and B.L. Qian
Theory of Nanosecond High-Power Microwave Breakdown on the Atmosphere Side of the Dielectric Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Zhu, C. Chang, K. Yan, C. Liu, and C. Chen
Microwave Power and Phase Measurements on a Recirculating Planar Magnetron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . .M. A. Franzi, G. B. Greening, N. M. Jordan, R. M. Gilgenbach, D. H. Simon, Y. Y. Lau, B. W. Hoff, and J. Luginsland
Characteristic Investigation of an Atmospheric-Pressure Microwave N2-Ar Plasma Torc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S.-Z. Li, C.-J. Chen, J. Zhang, Y.-X. Wang, and H. Li
Theoretical Study on a 0.4-THz Second Harmonic Gyrotron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Q. Zhao, S. Yu, X. Li, and H. Li

Charged Particle Beams and Sources
Plume Structure and Ion Acceleration of a Helicon Plasma Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. T. Williams and M. L. R. Walker
3-D Simulation of Ion Thruster Plumes Using Octree Adaptive Mesh Refinement . . . . . . . . . . . . . . . . . . . . . . . . . B. Korkut, Z. Li, and D. A. Levin
Effects of Sextupolar Undulator Magnetic Field Contributions on Inverse Free Electron Laser Accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .R. Khullar, G. Mishra, and G. Sharma
Negative Ion Generation and Isotopic Effect in Electron Cyclotron Resonance Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Á. J. Chacón Velasco, A. L. Chacón Parra, and W. A. Pacheco Serranos


High Energy Density Plasmas and Their Interactions

A New Approach for Modeling Electromagnetic Railguns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .S. A. Taher, M. Jafari, and M. Pakdel

Industrial, Commercial, and Medical Applications of Plasmas

Similarity Relations of Power-Voltage Characteristics for Tornado Gliding Arc in Plasma-Assisted Combustion Processes . . . . . . . . . . . . . . .
. . . A. F. Bublievsky, J. C. Sagás, A. V. Gorbunov, H. S. Maciel, D. A. Bublievsky, G. P. Filho, P. T. Lacava, A. A. Halinouski, and G. E. Testoni

Plasma Diagnostics
Detection of OH Radicals Generated in Wire-Plate Pulsed Corona Discharge by LIF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J.P. Jiang, Z.Y. Luo, L. Zhao, J.-Y. Xuan, M.X. Fang, and X. Gao
Excited State Distributions of Hydrogen Atoms in the Microwave Discharge Hydrogen Plasma and the Effect of Electron Energy Probabilistic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Y. Shimizu, Y. Kittaka, A. Nezu, H. Matsuura, and H. Akatsuka
Investigation of a Commercial Atmospheric Pressure Plasma Jet by a Newly Designed Calorimetric Probe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Kewitz, M. Fröhlich, J. von Frieling, and H. Kersten
Two Temperatures Components in CCP Argon 13.56-MHz RF Discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. A. Azooz and Z. T. Ali
Discharge Characteristics of an Atmospheric Dielectric-Barrier Discharge Jet . . . . . . . . . . . . . . . . . . M. Qian, C. Yang, S. Liu, G. Ni, and J. Zhang

Pulsed Power Science and Technology
Pressure Field Around Underwater Negative Streamers . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. Hoffer, K. Kolacek, P. Lukes, and V. Stelmashuk

Arcs & MHD
Interaction Between Arc Spot Plasma and Steel Surface in Descaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Z. Tang, R. Wu, S. Yang, K. Yang, Y. Zhang, H. Liu, X. Zhu, and H. Zhou
A Novel Vacuum Interrupter Contact Design for Improved High Current Interruption Performance Based on a Double-TMF Arc Control System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T. Lamara, K. Hencken, and D. Gentsch
Experimental Investigation of Arc Ignition Modes of Vacuum Arc Under Transverse Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Feng, S. Xiu, Y. Wang, G. Liu, Y. Zhang, and N. Li

Space Plasmas
Effect of Electron Pressure on Debris-Ambient Coupling in a Magnetized Collisionless Shock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. R. Lee, S. E. Clark, D. H. H. Hoffmann, and C. Niemann

Dusty Plasmas
DEA Waves With Cold and Hot Electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Ashraf and A. A. Mamun

Special Issue on Atmospheric Pressure Plasma Jets and Their Applications
Atmospheric Plasma Jet Relay Driven by a 40-kHz Power Supply and Its Representative Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Xia, Z. Chen, Z. Yin, J. Hao, Z. Xu, C. Xue, D. Hu, M. Zhou, Y. Hu, and A. A. Kudryavtsev


ANNOUNCEMENTS
Call for Papers-Special Issue on Plasma-Assisted Technologies
Call for Papers-Special Issue on the Physics of Dusty Plasmas
Call for Papers-Special Issue on Pulsed Power Science and Technology


Accessibility | Privacy & Opting Out of Cookies | Nondiscrimination Policy

Copyright 2015 IEEE - All rights reserved. Use of this newsletter site signifies your agreement to the IEEE Terms and Conditions.
A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology. [Response: Read Receipt]

To unsubscribe from all mailings, use your IEEE Account to update your "Personal Profile and Communication Preferences."

Replies to this message will not reach IEEE. Due to local e-mail service/provider settings, random characters may appear in some instances.

Although the IEEE is pleased to offer the privilege of membership to individuals and groups in the OFAC embargoed countries, the IEEE cannot offer certain services to members from such countries.

IEEE
445 Hoes Lane
Piscataway, NJ 08854 USA
+1 800 678 4333 (toll free, US & Canada)
+1 732 981 0060 (Worldwide)

For more information or questions regarding your IEEE Membership or IEEE Account, please direct your inquiries to the IEEE Contact Center.