[Response: Read Receipt]
T-NPS Header
T-PS Home   |  T-PS Home  |  Editorial Board  |  T-PS in IEEE Xplore  |   Early Access  |  Manuscript Submission
TPS ANNOUNCES THE END OF PAGE CHARGES. SEE EDITORIAL FOR DETAILS
FEATURED STORIES - JANUARY 2015

"Parallel Operation of Multiple Closely Spaced Small Aspect Ratio Rod Pinches"


A series of simulations and experiments to resolve questions about the operation of arrays of closely spaced small aspect ratio rod pinches has been performed. Design and postshot analysis of the experimental results are supported by 3-D particle-in-cell simulations. Both simulations and experiments support these conclusions. Penetration of current to the interior of the array appears to be more...

-----------------------

Final Implementation of a Subnanosecond Rise Time, Variable Pulse Duration, Variable Amplitude, Repetitive, High-Voltage Pulse Source


In this paper, we present the final implementation of our 0–50-kV picosecond rise time 0.5–10-ns pulse generator. The pulse generator will be used in future work to generate a (sub)-nanosecond streamer plasma for air purification research. The pulse generator is a single-line pulse generator with an oil spark-gap (SG), which generates 0.5–10-ns pulses with a 200-ps rise time and can operate at repetition rates of over 1 kHz into a 50- $Omega $ load.more...

-----------------------

A PUBLICATION OF THE IEEE NUCLEAR AND PLASMA SCIENCES SOCIETY

JANUARY 2015   |  VOLUME 43  |  NUMBER 1  |  ITPSBD  |  (SSN 0093-3813)
PART I OF THREE PARTS

SPECIAL ISSUE ON PLASMA PROPULSION - 2014


GUEST EDITORIAL
Introduction to the Special Issue on Plasma Propulsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Keidar, K. A. Polzin, A. Hoskins, H. Takegahara

SPECIAL ISSUE PAPERS
Implementation of an Entropy Closure Model for 2-D Hybrid Hall Thruster Simulations . . . . . . . . . . . . E. Cha, M. A. Cappelli, and E. Fernandez
On Scaling of Hall Effect Thrusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. A. Shagayda
Development of a High-Frequency Emissive Probe System for Plasma Potential Measurements in a Hall Thruster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Mazouffre, A. Pétin, P. Kudrna, and M. Tichý
Characterization of Eroded Boron Atoms in the Plume of a Hall Thruster . . . . . . . . . . . . . . . . . H. C. Dragnea, I. D. Boyd, B. C. Lee, and A. P. Yalin
Parametric Study of HEMP-Thruster Downscaling to μN Thrust Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Keller, P. Köhler, F. G. Hey, M. Berger, C. Braxmaier, D. Feili, D. Weise, and U. Johann
Ion Velocimetry Measurements and Particle-In-Cell Simulation of a Cylindrical Cusped Plasma Accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. L. Fabris, C. V. Young, M. Manente, D. Pavarin, and M. A. Cappelli
Ion Beam Instability in Hall Thrusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Kapulkin and E. Behar
Azimuthal Spoke Propagation in Hall Effect Thrusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. J. Sekerak, B. W. Longmier, A. D. Gallimore, D. L. Brown, R. R. Hofer, and J. E. Polk
A 2-D Hybrid Hall Thruster Simulation That Resolves the E×B Electron Drift Direction . . . . . . . . . . . C. M. Lam, E. Fernandez, and M. A. Cappelli
Operation of a Carbon Nanotube Field Emitter Array in a Hall Effect Thruster Plume Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. A. Singh, G. P. Sanborn, S. P. Turano, M. L. R. Walker, and W. J. Ready
Development and Initial Testing of a Magnetically Shielded Miniature Hall Thruster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. W. Conversano, D. M. Goebel, R. R. Hofer, T. S. Matlock, and R. E. Wirz
Conducting Wall Hall Thrusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. M. Goebel, R. R. Hofer, I. G. Mikellides, I. Katz, J. E. Polk, and B. N. Dotson
Plume Control of a Cusped Field Thruster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Liu, G. Sun, Y. Zhao, P. Chen, C. Ma, H. Wu, and D. Yu
Effect of Preionization on the Erosion of the Discharge Channel Wall in a Hall Thruster Using a Kinetic Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Cao, Q. Li, K. Shan, Y. Cao, and L. Zheng
Iodine Plasma Propulsion Test Results at 1–10 kW . . . . . . . . . . . . . . . . . . . . . . J. Szabo, M. Robin, S. Paintal, B. Pote, V. Hruby, and C. Freeman
Global Stability Analysis of Azimuthal Oscillations in Hall Thrusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Escobar and E. Ahedo
Development of a Novel Power Processing Unit for Hall Thrusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. Yamamoto, H. Takegahara, J. Aoyagi, K. Kuriki, T. Tamida, and H. Osuga
Physics of Cathode Phenomena in a Vacuum Arc With Respect to a Plasma Thruster Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. I. Beilis
Numerical Simulations of the Partially Ionized Gas in a 100-A LaB6 Hollow Cathode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. G. Mikellides, D. M. Goebel, B. A. Jorns, J. E. Polk, and P. Guerrero
Thrust Balance Characterization of a 200 W Quad Confinement Thruster for High Thrust Regimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Knoll, D. Lamprou, V. Lappas, M. Pollard, and P. Bianco
A Calcium Aluminate Electride Hollow Cathode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. P. Rand and J. D. Williams
A Compact Permanent-Magnet Helicon Thruster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F. F. Chen
Influence of Cathode Shape on Vacuum Arc Thruster Performance and Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Lun and C. Law
Theoretical Model of a Lanthanum Hexaboride Hollow Cathode . . . . . . . . . . . . . . . . . . . D. Pedrini, R. Albertoni, F. Paganucci, and M. Andrenucci
PPT Development for Nanosatellite Applications: Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Coletti, S. Ciaralli, and S. B. Gabriel
Application of Mechanical Probes for Evaluation of Plasma Acceleration in Ablative PPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Schönherr, K. Komurasaki, S. Hörner, Y. Arakawa, and G. Herdrich
Development of a Highly Precise Micronewton Thrust Balance . . . . . . . . F. G. Hey, A. Keller, C. Braxmaier, M. Tajmar, U. Johann, and D. Weise
Fusion Rocket Based on Stabilized Liner Implosions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. J. Turchi
Influence of Electron and Ion Thermodynamics on the Magnetic Nozzle Plasma Expansion . . . . . . . . . . . . . . . . . . . . . . . . M. Merino and E. Ahedo
Investigation of Plasma Detachment From a Magnetic Nozzle in the Plume of the VX-200 Magnetoplasma Thruster . . . . . . . . . . . . . C. S. Olsen,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. G. Ballenger, M. D. Carter, F. R. Chang Díaz, M. Giambusso,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. W. Glover, A. V. Ilin, J. P. Squire, B. W. Longmier, E. A. Bering, III, and P. A. Cloutier
Experimental Visualization of Ion Thruster Neutralization Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Nakayama and F. Tanaka
Critical Condition for Plasma Confinement in the Source of a Magnetic Nozzle Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . J. M. Little and E. Y. Choueiri
Analysis of Atmosphere-Breathing Electric Propulsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Schönherr, K. Komurasaki, F. Romano, B. Massuti-Ballester, and G. Herdrich
Coupled Molecular Dynamics—3-D Poisson Simulations of Ionic Liquid Electrospray Thrusters . . . . . . . . . . . . . . . . . . . A. Borner and D. A. Levin
Semianalytic Approach for Optimal Configuration of Electric Propulsion Spacecraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. Pergola
The PEGASES Gridded Ion–Ion Thruster Performance and Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Aanesland, D. Rafalskyi, J. Bredin, P. Grondein, N. Oudini, P. Chabert, D. Levko, L. Garrigues, and G. Hagelaar
Electric Propulsion for Commercial Applications: In-Flight Experience and Perspective at Eutelsat . . . . . . . . . . . . . . . . . . . . . . . . . . C. Casaregola


PART II OF THREE PARTS

SPECIAL ISSUE ON MEGAGAUSS MAGNETIC FIELDS : PRODUCTION & APPLICATION


GUEST EDITORIAL
Introduction to the Special Issue on Megagauss Magnetic Fields : Production & Application . . . . . . . . . . . . . . . . M. T. Domonkos and K. W. Struve

SPECIAL ISSUE PAPERS
Compact Transformer Drive for High-Current Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. J. Turchi
Studying Autonomous Magneto-Cumulative Energy Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V. A. Demidov, V. D. Sadunov, S. A. Kazakov, S. N. Golosov, A. A. Utenkov, A. S. Boriskin, M. V. Antipov, A. V. Blinov, and I. V. Yurtov
Increasing Power of Energy Preamplifiers for Disk Magnetocumulative Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. A. Demidov, S. A. Kazakov, A. S. Boriskin, Y. V. Vlasov, and V. A. Yanenko
Analysis of Magnetohydrodynamic Simulation Results of Explosive Current Opening Switch Operation . . . . . . . . V. A. Demidov and Y. V. Vlasov
Numerical Simulation of MC-1 Cascade Generator for Generating 20-MG-Range Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. I. Bykov, M. I. Dolotenko, and V. D. Selemir
Numerical Experiment on Initial Magnetic Flux Compression by a Multiwire Z-Pinch . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. P. Orlov and B. G. Repin
High Magnetic Field Facility for Cyclotron Resonance Investigation in Semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V. V. Platonov, Y. B. Kudasov, A. V. Filippov, I. V. Makarov, D. A. Maslov, and O. M. Surdin
Liner Stability Problems for Megagauss Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. J. Turchi
Experimental Studies of an Ultrahigh-Speed Plasma Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. T. Domonkos, J. H. Degnan, P. E. Adamson,
. . . . . . . . . . . . . . . . . . . . . . D. J. Amdahl, B. Blasy, R. Cooksey, T. C. Grabowski, F.M. Lehr, P. R. Robinson, E. L. Ruden, W. M. White, M. H. Frese,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. D. Frese, S. K. Coffey, J. F. Camacho, V. Makhin, N. Roderick, J. V. Parker, A. Lerma, D. Gale, M. Kostora,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. McCullough, D. Ralph, C. E. Roth, W. E. Sommars, T. Montoya, A. G. Lynn, P. J. Turchi, and D. Schroen

 

PART III OF THREE PARTS


EDITORIAL
Positive Changes Coming for 2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. J. Gitomer

REGULAR PAPERS
Microwave Generation and Microwave-Plasma Interaction
Output System for a 170-GHz/1.5-MW Continuous Wave Gyrotron Operating in the TE28,12 Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. K. Dhakad, G. S. Baghel, M. V. Kartikeyan, and M. K. Thumm
3-D PIC Simulation of Gyrotwystron Amplifier Using MAGIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Thottappan, S. Yuvaraj, and P. K. Jain
The Influence of Plasma Induced by α-Particles on the Radar Echoes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. Liu, J. Zhu, C. Cui, X. Wang, S. Zhang, R. Zhang, T. Tang, Y. Huang, and R. Huang
Design and Theoretical Analysis of Multibeam Folded Waveguide Traveling-Wave Tube for Subterahertz Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Yan, W. Su, Y. Wang, and A. Xu

Charged Particle Beams and Sources
Parallel Operation of Multiple Closely Spaced Small Aspect Ratio Rod Pinches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. J. Harper-Slaboszewicz, J. Leckbee, N. Bennett, E. A. Madrid, D. V. Rose, C. Thoma, D. R. Welch, P. W. Lake, and A. L. McCourt

Pulsed Power Science and Technology

Single- and Repetitive-Pulse Conical Theta-Pinch Inductive Pulsed Plasma Thruster Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. K. Hallock, A. K. Martin, K. A. Polzin, A. C. Kimberlin, and R. H. Eskridge
Final Implementation of a Subnanosecond Rise Time, Variable Pulse Duration, Variable Amplitude, Repetitive, High-Voltage Pulse Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Huiskamp, E. J. M. van Heesch, and A. J. M. Pemen
Current-Mode Approach in Power Supplies for DBD Excilamps: Review of 4 Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. Diez, H. Piquet, D. Florez, and X. Bonnin
Estimation of Requirements for the Formation of Nanocrystalline Diamond Driven by Electron Beam Ablation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. Henda and O. Alshekhli


Arcs & MHD

Effects of Oxide on Plasma in Arc Welding With Activating Fluxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Zhang, F. Fan, J. Wang, and L. Liu
Stepwise Simulation on the Motion of a Single Cathode Spot of Vacuum Arc in External Transverse Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Shi, C. Wang, X. Song, S. Jia, and L. Wang

Special Issue on APSPT - 2013
Control of Plasma-Dielectric Boundary Sheath Potential for the Synthesis of Carbon Nanomaterials in Surface Wave Plasma CVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Kim, H. Ohsaki, and M. Katsurai

Special Issue - Selected Papers from SOFE 2013
42-GHz/500-kW Electron Cyclotron Resonance Heating System on Tokamak SST-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B. K. Shukla, P. J. Patel,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Patel, R. Babu, H. Patel, P. Dhorajia, P. Singh, C. B. Sumod, D. P. Thakkar, L. N. Gupta, U. K. Barua,
. . . . . . . . . . . . . . . . . . . . . . . . . R. Jha, D. Bora, M. Shmelev, V. Irkhin, M. Khozin, V. Belousov, E. Soluyanova, E. Tai, Z. Gasainiev, and G. Denisov


COMMENTS AND CORRECTIONS
Corrections to “Investigations on Dispersion and Gain in Nonstaggered Bilateral Metal-Grating Periodic Structure With Electron Beam” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Liang, D. Zhao, Y. Wang, and Y. Ding
ANNOUNCEMENTS
Call for Papers—Special Issue on Pulsed Power Science and Technology
Call for Papers—Special Issue on Plasma Assisted Technologies
Contact & Support  |   Privacy & Opting Out of Cookies   |   Terms & Conditions   |   Nondiscrimination Policy
A non-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this newsletter signifies your agreement to the terms and conditions.
To unsubscribe from all mailings, use your IEEE Web Account to update your "Personal Profile and Communication Preferences."

Replies to this message will not reach IEEE. Due to local e-mail service/provider settings, random characters may appear in some instances.

Although the IEEE is pleased to offer the privilege of membership to individuals and groups in the OFAC embargoed countries, the IEEE cannot offer certain services to members from such countries.

IEEE
445 Hoes Lane
Piscataway, NJ 08854 USA
+1 800 678 4333 (toll free, US & Canada)
+1 732 981 0060 (Worldwide)

For more information or questions regarding your IEEE membership or IEEE Web Account, please direct your inquiries to the IEEE Contact Center.