T-NPS Header
T-PS Home  |  Editorial Board  |  T-PS in IEEE Xplore  |   Early Access  |  Manuscript Submission
FEATURED STORIES - DECEMBER 2016

"Dimensional Bounds on Vircator Emission"

by Jonathan I. Katz

Virtual cathode oscillators (vircators) are sources of short-pulsed, high-power, microwave (GHz) radiation. An essentially dimensional argument relates their radiated power, pulse energy and oscillation frequency to their driving voltage and fundamental physical constants. For a diode of width and gap 10 cm and for the voltages of a few hundred keV, the peak radiated power cannot exceed 𝒪(30 GW) and the broadband single cycle radiated energy cannot exceed 𝒪(3 J). If electrons can be accelerated to relativistic energies, higher powers and radiated energies may be possible. more...

"Multipurpose Equipment for Radio Frequency Plasma Decontamination and Protective Coating of Paper Materials"

by Emil Ghiocel Ioanid, Dorina E. Rusu, Ana M. Vlad, Simona Dunca, Catalin Tănase, Viorica Frunza, Gabriela Savin, and Marta C. Ursescu

This paper presents a radio frequency plasma equipment designed to be used for the conservation procedures, such as decontamination, cleaning, and consolidation of cellulose-based materials. Decontamination and cleaning are carried out by the low-temperature nitrogen plasma generated between two electrodes, connected to a 1.5-MHz generator. The paper consolidation is performed by coating with compatible polymers in view of long term protection. Surface analyses (color analysis and electron microscopy) were undertaken to assess the uniform display of the polymer on the paper surface. The microbiological tests made on representative samples collected from historical books attested the complete inhibition of bacteria and fungi after, at most, 7-min treatment duration, depending on the initial infestation degree. more...
-----------------------

A PUBLICATION OF THE IEEE NUCLEAR AND PLASMA SCIENCES SOCIETY

DECEMBER 2016   |  VOLUME 44  |  NUMBER 12  |  ITPSBD  |  (ISSN 0093-3813)

SPECIAL ISSUE ON PLASMA ASSISTED TECHNOLOGIES


GUEST EDITORIAL
Introduction to the Special Issue on Plasma Assisted Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. B. Matveev and T. Ombrello

SPECIAL ISSUE PAPERS
Proper Orthogonal Decomposition for Analysis of Plasma-Assisted Premixed Swirl-Stabilized Flame Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. Rajasegar, C. M. Mitsingas, E. K. Mayhew, J. Yoo, and T. Lee
Characteristics of Plasma-Assisted Jet Flame and Its Application to Cross-Flow Methane-Air Combustion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. W. Wu, G. H. Ni, Q. J. Guo, P. Zhao, L. Li, and Y. D. Meng
Investigations of Nonstationary Processes in Low Emissive Gas Turbine Combustor With Plasma Assistance . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. I. Serbin, A. V. Kozlovskyi, and K. S. Burunsuz
Investigation of Low-Pressure Glow Discharge in a Coaxial Gridded Hollow Cathode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . Y. Liang, C. Yuan, R. Gao, J. Jia, G. Kirsanov, V. Bekasov, A. Marin, A. Kudryavtsev, S. Eliseev, and Z. Zhou
Numerical and Experimental Diagnostics of Dusty Plasma in a Coaxial Gridded Hollow Cathode Discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Jia, C. Yuan, A. A. Kudryavtsev, S. I. Eliseev, G. V. Kirsanov, V. S. Bekasov, R. Gao, and Z. Zhou
Ion Wind Generator Utilizing Bipolar Discharge in Parallel Pin Geometry . . . . . . . . . . . . . . . . . . V. T. Dau, T. X. Dinh, T. Terebessy, and T. T. Bui
Nanosecond Discharge in Bubbled Liquid n-Heptane: Effects of Gas Composition and Water Addition . . . . . . . . . . . . A. Hamdan and M. S. Cha
Characterization of Ethanol Plasma Glow Discharge, Decomposition in Several Species and Solid Film Formation . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. G. Reyes, A. Gómez, H. Martínez, O. Flores, C. Torres, and J. Vergara
The OES Diagnosis in Removal of HCHO by the Uniform Bipolar Nanosecond-Pulsed DBD Using Wire-Cylinder
     Electrode Configuration in Atmospheric N2
. . . . . . . . . . . . . . . . . . . . . . . . P.-C. Jiang, W.-C. Wang, D.-Z. Yang, L. Zhang, L. Jia, and S. Zhang
Direct Measurements of Permittivity of Plasma-Assisted Combustion Using Electrical Capacitance Tomography . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Q. Chen, Y. Jia, X. Mao, and Y. Ju
Municipal Solid Waste Plasma Processing: Thermodynamic Computation and Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. E. Messerle, A. L. Mosse, and A. B. Ustimenko
Plasma-Assisted Treatment of Sewage Sludge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. B. Matveev, S. I. Serbin, and N. V. Washchilenko
Magnetron Sputtering System for Deposition of Multinanolayered Coatings With Reactive Gas Activation in Microwave Discharge . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. I. Kuzmichev, V. I. Ivashchenko, V. V. Perevertailo, and P. L. Skrynskyi
Effect on Structural and Magnetic Properties of CaMn0.9Mo0.1O3 Employing Glow Discharge in the Synthesis Route . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. I. Supelano, A. S. Santos, and C. A. P. Vargas
Multipurpose Equipment for Radio Frequency Plasma Decontamination and Protective Coating of Paper Materials . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E. G. Ioanid, D. E. Rusu, A. M. Vlad, S. Dunca, C. Tănase, V. Frunza, G. Savin, and M. C. Ursescu
Three-Phase Zvezda-Type Plasmatrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. S. Svirchuk and A. N. Golikov



PART II OF THREE PARTS

SPECIAL ISSUE ON THE 9TH ASIA-PACIFIC INTERNATIONAL SYMPOSIUM ON THE BASICS AND
APPLICATIONS OF PLASMA TECHNOLOGY (APSPT-9), AND THE 28TH SYMPOSIUM ON PLASMA
SCIENCE FOR MATERIALS (SPSM-28)


GUEST EDITORIAL
Introduction to the Special Issue on The 9th Asia-Pacific International Symposium on the Basics and Applications of Plasma Technology
     (APSPT-9), and The 28th Symposium on Plasma Science for Materials (SPSM-28)
. . . . . . . . . . H. Akatsuka, J.-S. Wu, K. Teii, and K. Takaki

SPECIAL ISSUE PAPERS
Evaluation of Energy-Conversion Efficiency of Multineedle-to-Plate Corona-DBD Plasma for Organic Degradation in Soil . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. Lu, P. Luo, Y. Guo, K. Shang, X. Zhang, J. Li, and Y. Wu
Microfluidic Transport Through Microsized Holes Treated by Nonequilibrium Atmospheric-Pressure Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Ito, K. Ishikawa, D. Onoshima,
     N. Kihara,   K. Tatsukoshi,   H. Odaka,   H. Hashizume,   H. Tanaka,   H. Yukawa,   K. Takeda,   H. Kondo,   M. Sekine,   Y. Baba, and M. Hori

Preparation of Er2O3 and TiO2 Multilayer Films as Optical Filter Using Magnetron Sputtering Deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .H. Kawasaki, Y. Suda, T. Ohshima, Y. Yagyu, and T. Ihara
Influence of Ozone Generated by Surface Barrier Discharge on Nematode and Plant Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F. Mitsugi, T. Abiru, T. Ikegami, K. Ebihara, S.-I. Aoqui, and K. Nagahama
Detection of Pressure Waves Emitted From Plasma Jets With Fibered Optical Wave Microphone in Gas and Liquid Phases . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F. Mitsugi, S. Kusumegi, T. Kawasaki, T. Nakamiya, and Y. Sonoda
Preparation of Titanium-Doped Diamond-Like Carbon Films With Electrical Conductivity Using High Power Pulsed Magnetron
     Sputtering System With Bipolar Pulse Voltage Source for Substrate
. . . . . . . . . . . . . . . . . . . T. Kimura, H. Kamata, S. Nakao, and K. Azuma
Aerosol-Assisted Plasma Deposition of Biocomposite Coatings: Investigation of Processing Conditions on Coating Properties . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . C.-P. Hsiao, C.-C. Wu, Y.-H. Liu, Y.-W. Yang, Y.-C. Cheng, F. Palumbo, G. Camporeale, P. Favia, and J.-S. Wu
Effects of Working Pressure on the Physical Properties of a-InGaZnOx Films Formed Using Inductively Coupled Plasma-Enhanced
     Reactive Sputtering Deposition
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Takenaka, K. Nakata, G. Uchida, Y. Setsuhara, and A. Ebe
Infrared Spectroscopic Study of Hydrogenation Process of Si(100) Surface During Hydrogen Plasma Exposure . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Shinohara, N. Maruno, Y. Takami, S. Takabayashi, and Y. Matsuda
Production Enhancement of Reactive Oxygen and Nitrogen Species at Interface of Helium Plasma Jet and Agar . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C.-T. Liu, C.-J. Wu, Z.-H. Lin, J.-Y. Wu, and J.-S. Wu
Modeling of Air Plasma in Direct-Current Torch at Nonatmospheric Pressure . . . . . . . . . . . . . . . . . . . . . . S.-W. Chau, S.-C. Hsu, and S.-H. Chen
Numerical Investigation on Ion Inertia Force in Low-Temperature Plasma Using Fluid Model Considering Ion Momentum Equation . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K.-L. Chen, M.-F. Tseng, B.-R. Gu, C.-T. Hung, and J.-S. Wu
Basic Study of the Peeling Off of Paint Using Irradiation by Atmospheric Pressure Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Nakamura, K. Morito, T. Hamasaki, T. Asaji, and M. Furuse
Ar/O2 Argon-Based Round Atmospheric-Pressure Plasma Jet on Sterilizing Bacteria and Endospores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z.-H. Lin, C.-Y. T. Tschang, K.-C. Liao, C.-F. Su, J.-S. Wu, and M.-T. Ho
Feasibility Study of AlN/A2O3 Coating on Aluminum Alloy Using Microarc Oxidation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J.-L. Lee, K.-N. Kuo, K. K.-S. Chiu, J.-Y. Kao, and B.-H. Lin
Positive-Bias Temperature Instability Improvement of Poly-Si Thin-Film Transistor With HfO2 Gate Dielectric by
     Ammonia Plasma Treatment
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. C.-Y. Ma, Z.-Y. Lin, Y.-S. Huang, B.-S. Huang, and Z.-D. Wu
Quantitative Estimation of OH Radicals Reacting in Liquid Using a Chemical Probe for Plasma in Contact With Liquid . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Shiraki, N. Ishibashi, and N. Takeuchi
Rapid Surface Oxidation of the Si Substrate Using Longitudinally Long Ar/O2 Loop Type of Inductively Coupled Thermal Plasmas . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . Y. Maruyama, Y. Tanaka, H. Irie, T. Tsuchiya, M. K. S. Tial, Y. Uesugi, T. Ishijima, T. Yukimoto, and H. Kawaura
Nonlinear Characteristics of Plasma Induced by an Electron Beam Irradiating the Target Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Y. C. Lee, B. C. Chen, C. Y. Ho, M. Y. Wen, and Y. H. Tsai
Preparation of Antibacterial Ceramic Coatings Containing Ag on Titanium Alloy by Use of Microarc Oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J.-L. Lee, K.-N. Kuo, T.-L. Sung, and Y.-T. Lai
A Cold Planar Nitrogen-Based Atmospheric- Pressure Dielectric Barrier Discharge Jet With Enhanced UV Emission and Radical Generation
     Using Short Electrodes
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K.-Y. Cheng, Y.-W. Yang, Z.-H. Lin, G.-C. Liao, C.-T. Liu, and J.-S. Wu
Effect of Voltage Rise Rate on Streamer Branching and Shock Wave Characteristics in Supercritical Carbon Dioxide . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Furusato, M. Ota, T. Fujishima, T. Yamashita, T. Sakugawa, S. Katsuki, and H. Akiyama
Effect of Ground and Floating Electrode on a Helium-Based Plasma Jet and Its Applications in Sterilization and
     Ceramic Surface Treatment
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .C.-T. Liu, K.-Y. Cheng, Z.-H. Lin, C.-J. Wu, J.-Y. Wu, and J.-S. Wu
Plasma Parameters of Titanium-Based Metallic Plasma Generated by a Compact-Type High-Power Pulsed Sputtering
     Penning Discharge
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Azuma and T. Kimura
The Relationship Between Characteristics of DLC Film and Electron Temperature Measured by Optical Emission Spectroscopy . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Takizawa and S. Kunitsugu
Plasma-Induced Interfacial Layer Impacts on TFETs With Poly-Si Channel Film by Oxygen Plasma Surface Treatment . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. C.-Y. Ma, K. Chang, Y.-C. Lin, and T.-H. Wu
Low-Energy Ion-Assisted Deposition of Boron Nitride Films in Surface-Wave Plasma . . . . . . . . . . . . . . . . . M. Torigoe, K. Teii, and S. Matsumoto
Effects of Gas Flow Rate on Supply of Reactive Oxygen Species Into a Target Through Liquid Layer in Cold Plasma Jet . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Kawasaki, S. Kusumegi, A. Kudo, T. Sakanoshita, T. Tsurumaru, and A. Sato



PART III OF THREE PARTS


REGULAR PAPERS
Basic Processes in Fully and Partially Ionized Plasmas
Research on the FDTD Method of Electromagnetic Wave Scattering Characteristics in Time-Varying and Spatially Nonuniform
     Plasma Sheath
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. Chen, L. Guo, J. Li, and S. Liu
Generalized Paschen’s Law for Overvoltage Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. P. Babich and T. V. Loˇıko
Dynamics and Structure of Nonthermal Atmospheric-Pressure Air Plasma Jets: Experiment and Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. V. Naidis, E. A. Sosnin, V. A. Panarin, V. S. Skakun, and V. F. Tarasenko

Microwave Generation and Microwave-Plasma Interaction
Wideband Absorber With Combination of Plasma and Resistive Frequency Selective Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Zahir Joozdani and M. Khalaj Amirhosseini
Efficiency Enhancement of CW Magnetron by Ferrite Material Filling . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. K. Vyas, S. Maurya, and V. P. Singh
Dimensional Bounds on Vircator Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. I. Katz
A High-Power Widely Tunable Limiter Utilizing an Evanescent-Mode Cavity Resonator Loaded With a Gas Discharge Tube . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Semnani, S. O. Macheret, and D. Peroulis

Charged Particle Beams and Sources
Design Considerations on Complementary Split Ring Resonator-Loaded Waveguides for Wakefield Generation . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E. Sharples and R. Letizia
Terahertz Electronic Source Based on Spoof Surface Plasmons on the Doubly Corrugated Metallic Waveguide . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Y.-Q. Liu, C.-H. Du, and P.-K. Liu

High Energy Density Plasmas and Their Interactions
A New Surface Discharge Source: Plasma Characteristics and Delivery of Reactive Species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B. Wang, D. Liu, Z. Zhang, Q. Li, X. Wang, and M. G. Kong

Industrial, Commercial, and Medical Applications of Plasmas
The Current–Voltage Characteristics of Atmospheric Pressure Plasma Jets With the Various Working Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Cho, Y. Kim, Y. Kim, and S.-H. Yi

Pulsed Power Science and Technology
Design and Analysis of a New Ring Winding Structure for Permanent Magnet Linear Synchronous Motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Zhang, H. Zhou, J. Duan, and B. Kou
Characteristic Analysis of Pulse Discharge Hypocenter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Fan, Y. Sun, X. Xu, and P. Yan
Analytical Expression for Discharge Process of Multiphase Air-Core Pulsed Alternators . . . . . . . . . . . . . . . . . . . . . . S. Wang, S. Wu, and S. Cui

Arcs & MHD
Impact of Different Vacuum Interrupter Properties on High-Current Anode Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . A. Khakpour, D. Uhrlandt, R. Methling, S. Franke, S. Gortschakow, S. Popov, A. Batrakov, and K.-D. Weltmann

Fusion Science and Technology
Prediction of Temperature Rise in Water-Cooling DC Busbar Through Coupled Force and Natural Convection
     Thermal-Fluid Analysis
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Guo, Z. Song, P. Fu, L. Jiang, M. Wang, and L. Dong

Special Issue on Atmospheric Pressure Plasma Jets and Their Applications
Solid-State Nanosecond-Pulse Plasma Jet Apparatus Based on Marx Structure With Crowbar Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Dong, C. Yao, N. Yang, T. Luo, Y. Zhou, and C. Wang
Determination of Electron Density and Attenuation of Electromagnetic Waves in Ar DBD Plasmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Q. Zhang, H. Zhao, H. Fan, and H. Lin
Oxides Yield Comparison Between DBD and APPJ in Water–Gas Mixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Chen, Y. Gan, C. Zhu, J. Fei, Y. Jiang, L. Wang, X. Gao, X. He, W. Cai, and Z. Li
Catalytic Oxidation of Dimethyl Sulfide Over Commercial V-W/Ti Catalysts: Plasma Activation at Low Temperatures . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Zhu, Y. Yang, X. Geng, C. Zheng, J. Zhou, X. Gao, Z. Luo, M. Ni, and K. Cen
Study on the Effective Ionization Rate of Atmospheric Corona Discharge Plasmas by Considering Humidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Wen, X. Yuan, L. Lan, M. Long, and L. Hao

Special Issue on High Power Microwave Generation 2016
Controllability Study of Propagating Mode Content by an Angle-Adjustable Mirror of a Miter-Bend in EC H&CD Transmission Line . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Oda,
     R. Ikeda, M. Fukunari, T. Ikeyama, K. Takahashi, K. Kajiwara, T. Kobayashi, S. Moriyama, K. Sakamoto, M. A. Shapiro,   and   R. J. Temkin

Development of a Rep-Rated Pulsed Power System Utilizing Electrochemical Prime Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. M. Huhman, D. A. Wetz, Jr., and L. Mili
3-D Numerical Characterization of a Microwave Argon PECVD Plasma Reactor at Low Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Bouherine, A. Tibouche, N. Ikhlef, and O. Leroy
The Numerical Analysis Methods of Electromagnetic Rail Launcher With Motion . . . . . . . . S. Tan, J. Lu, X. Zhang, B. Li, Y. Zhang, and Y. Jiang
High-Power RF Generation From Nonlinear Transmission Lines With Barium Titanate Ceramic Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. P. Silva Neto, J. O. Rossi, J. J. Barroso, and E. Schamiloglu

Special Issue on Selected Papers from SOFE 2015
CFD Analysis of Different Cooling Options for a Gyrotron Cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Savoldi, A. Bertinetti, G. F. Nallo, A. Zappatore, R. Zanino, F. Cau, F. Cismondi, and Y. Rozier
Reliability and Maintainability Data for Lead Lithium Cooling Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Cadwallader
Snowflake Divertor Experiments in the DIII-D, NSTX, and NSTX-U Tokamaks Aimed at the Development of the Divertor Power Exhaust
     Solution
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. A. Soukhanovskii,
     S. L. Allen,  M. E. Fenstermacher,  C. J. Lasnier,  M. A. Makowski,  A. G.McLean,  E. T. Meier,  W. H. Meyer,  T. D. Rognlien,  D. D. Ryutov,
     F. Scotti,   E. Kolemen,   R. E. Bell,   A. Diallo,   S. Gerhardt,   R. Kaita,   S. Kaye,   B. P. LeBlanc,   R. Maingi,   J. E. Menard,   M. Podesta,
     A. L. Roquemore,  R. J. Groebner,  A. W. Hyatt,  A. W. Leonard,  T. H. Osborne,  T. W. Petrie,  J.-W. Ahn,  R. Raman,  and  J. G. Watkins

The Development of the Material Plasma Exposure Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Rapp,
     T. M. Biewer,  T. S. Bigelow,  J. B.O. Caughman,  R. C. Duckworth,  R. J. Ellis,  D. R.Giuliano,  R. H. Goulding,   D. L. Hillis,   R. H. Howard,
     T. L. Lessard,  J. D. Lore,  A. Lumsdaine,  E. J. Martin,  W. D. McGinnis,  S. J. Meitner,  L. W. Owen, H. B. Ray, G.C. Shaw, and V. K. Varma

DIII-D Electron Cyclotron Heating System Status and Upgrades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Cengher, J. Lohr, Y. Gorelov, A. Torrezan, D. Ponce, X. Chen, and C. Moeller

Technical Note
Design of Coating on Helix for High-Power Traveling Wave Tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Fan, Y. Xue, W. Li, and S. Chang
A Method to Reduce Electrode Erosion in a Magnetically Driven Rotating Arc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. Nemchinsky

Accessibility | Privacy and Opting Out of Cookies | Nondiscrimination Policy

Copyright 2016 IEEE - All rights reserved. Use of this newsletter site signifies your agreement to the IEEE Terms and Conditions.
A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. [Response: Read Receipt]

If you would like to be removed from this email distribution, please [Response: Unsubscribe from List].
If you have unsubscribed in error, please [Response: Subscribe to List].
To unsubscribe from all mailings, use your IEEE Account to update your "Personal Profile and Communication Preferences."

Replies to this message will not reach IEEE. Due to local email service/provider settings, random characters may appear in some instances.

Although the IEEE is pleased to offer the privilege of membership to individuals and groups in the OFAC embargoed countries, the IEEE cannot offer certain services to members from such countries.

IEEE
445 Hoes Lane
Piscataway, NJ 08854 USA
+1 800 678 4333 (toll free, US & Canada)
+1 732 981 0060 (Worldwide)

For more information or questions regarding your IEEE Membership or IEEE Account, please direct your inquiries to the IEEE Contact Center.