[Response: Read Receipt]
T-NPS Header
T-PS Home   |  T-PS Home  |  Editorial Board  |  T-PS in IEEE Xplore  |   Early Access  |  Manuscript Submission
FEATURED STORIES - DECMBER 2014

"Backward-Wave Suppression Analysis, and Design and Fabrication of a Prototype Millimeter-Wave Ring-Bar Slow-Wave Structure"


A challenge for high-power millimeter-wave (mmw) traveling-wave tube (TWT) amplifiers is to realize high-power operation without incurring oscillation from backward-wave (BW) interaction. Conventional wisdom purports that contrawound (including ring bar) helix TWTs are superior to monofilar helix TWTs for stability against BW oscillations due to a zero or at least greatly suppressed BW interaction impedance (KBW) compared with the forward-wave (FW) interaction impedance (KFW). more...

-----------------------

"Stabilized Operation of a Microwave Compressor Driven by Relativistic S-Band Magnetron"


The stabilized operation of a microwave compressor based on a travelling wave resonator, producing at its output microwave pulses with a power of (1.15~pm ~0.05) GW and duration of (12 pm 2) ns, is described. The compressor is pumped by a relativistic S-band magnetron generating microwave pulses with a power up to 250 MW and duration of (sim 100) ns. more...

-----------------------

"A High Vacuum, High Electric Field Pulsed Power Interface Based on a Ceramic Insulator"



Improving the flashover voltage in a vacuum interface between a pulsed-power system and a vacuum region has been a goal for many years. The interface problem is difficult because of the electrical, mechanical, and vacuum issues that must be satisfied simultaneously. In this paper, according to the theories of vacuum flashover and the design rules for high electric field insulators, a ceramic insulated vacuum interface is presented. more...

-----------------------

Soliton Generation Using Nonlinear Transmission Lines



In recent years, there has been great interest in the study of nonlinear transmission lines (NLTLs) for high-power radio frequency (RF) generation. The periodicity of the NLTL accounts for dispersion effects, whereas its nonlinear elements (inductors and/or capacitors) are responsible for the nonlinear processes. more

-----------------------

Pulsed Power Generation by Solid-State LTD



A solid-state linear transformer driver stack has been developed to demonstrate pulsed power generation and output pulse shaping. It consists of 30 modules each using 24 power metal-oxide-semiconductor field-effect transistors as switches. The output voltage of the stack is the superposition of the voltage pulse of each module no matter if the modules are switched synchronously or not....more

-----------------------

Influencing Factors of Dielectric Breakdown in the PEF Treatment Chamber



Electrical breakdown of the treatment chambers under repetitive high-intensity pulses impedes the industrial application of pulsed electric field (PEF) technology. In this paper, phenomenon and laws of electric discharges in the PEF treatment chambers were studied. The experimental results indicate that temperature increase and formation of gas bubbles under high electric field strength reduces insulation of water solution....more

-----------------------

A PUBLICATION OF THE IEEE NUCLEAR AND PLASMA SCIENCES SOCIETY

DECEMBER 2014   |  VOLUME 42  |  NUMBER 12  |  ITPSBD  |  (SSN 0093-3813)
PART I OF THREE PARTS

SPECIAL ISSUE ON THE APSPT 2013E


GUEST EDITORIAL
Introduction to the Special Issue on the APSPT 2013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J.-S. Wu, C.-C. (Jerry) Hsu, J. P. Chu, and K. Teii

SPECIAL ISSUE PAPERS
Electrical and Optical Characterization of Atmospheric-Pressure Helium Plasma Jets Generated With a Pin Electrode:
     Effects of the Electrode Material, Ground Ring Electrode, and Nozzle Shape
. . . . . . . . . . . . H. M. Joh, H. R. Kang, T. H. Chung, and S. J. Kim
Tailoring Surface Properties of Nonwoven Polypropylene by Cyclonic Atmospheric Pressure Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C.-Y. Tsai, T.-C. Wei, K.-S. Chen, R.-S. Juang, and C. Huang
Hydrogen Production From Hydrocarbons With Use of Plasma Discharges Under High Pressure Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Nishida, C.-Z. Cheng, and K. Iwasaki
Gas Flow Dependence on Dynamic Behavior of Serpentine Plasma in Gliding Arc Discharge System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F. Mitsugi, T. Ohshima, H. Kawasaki, T. Kawasaki, S.-I. Aoqui, T. Baba, and S. Kinouchi
Effect of Multiple Frequency H2/Ar Plasma Treatment on the Optical, Electrical, and Structural Properties of AZO Films . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Wu, T. Huang, C. Jin, L. Zhuge, Q. Han, and X. Wu
Spectroscopic Characteristics of Supersonically Expanding Nitrogen Arc-Jet Plume—Strong Atomic Lines and Weak Molecular
     Band Spectra
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Akatsuka, M. Hatcho, and H. Matsuura
Surface Characterization of Argon/Methane Mixture Atmospheric-Pressure Plasma-Treated Filtration Poly(Vinylidene Fluoride) Membrane
     and Its Flux Enhancement
. . . . . . . . . . . . . . . . . . . . . . . . . . R.-S. Juang, K.-S. Chen, T.-C. Wei, C.-H. Liu, C.-Y. Tsai, H.-Y. Jheng, and C. Huang
Gate Leakage Characteristics for 28 nm HfZrOx pMOSFETs After DPN Process Treatment With Different Nitrogen Concentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W.-D. Lee, M.-C. Wang, S.-J. Wang, C.-W. Lian, and L. S. Huang
Properties of Soil Treated With Ozone Generated by Surface Discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F. Mitsugi, T. Nagatomo, K. Takigawa, T. Sakai, T. Ikegami, K. Nagahama, K. Ebihara, T. Sung, and S. Teii
Gate Leakage for 28 nm Stacked HfZrOx Dielectric of p-Channel MOSFETs After Decoupled Plasma Nitridation Treatment With Annealing
     Temperatures
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S.-J. Wang, M.-C. Wang, W.-D. Lee, J.-M. Yang, L. S. Huang, and H.-S. Huang
Plasma-Aided Coal Ignition and Combustion: Modeling and Full-Scale Trials . . . . . . . . . . . . . . . . . . . . . . . . . V. E. Messerle and A. B. Ustimenko
Threshold Voltage Reduction and Mobility Improvement of LTPS-TFTs With NH3 Plasma Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. C.-Y. Ma, S.-W. Yuan, T.-C. Chan, and C.-Y. Huang
Novel Atmospheric Pressure Plasma Utilizing Symmetric Dielectric Barrier Discharge for Mass Spectrometry Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C.-Y. Chen, C.-H. Chiang, and C.-H. Lin
Numerical Study on Acceleration and Deceleration Mechanism of Weakly Ionized Plasma Flowing Supersonically Through Open Field Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Tsuno, T. Nakahagi, R. Yamashiro, A. Nezu, H. Matsuura, and H. Akatsuka
Effects of Gate Dielectric and Process Treatments on the Electrical Characteristics of IGZO TFTs With Film Profile Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B.-S. Shie, H.-C. Lin, R.-J. Lyu, and T.-Y. Huang
Modification of Early Effect for 28-nm nMOSFETs Deposited With HfZrOx Dielectric After DPN Process Accompanying Nitrogen
     Concentrations
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W.-D. Lee, M.-C. Wang, S.-J. Wang, W.-H. Lan, C.-W. Li, and B.-W. Yang
Fine Al2O33 Powder Produced by Radio-Frequency Plasma From Aluminum Dross . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S.-F. Yang, T.-M. Wang, Z.-Y. J. Shie, S.-J. Jiang, C.-S. Hwang, and C.-C. Tzeng
A Flexible Paper-Based Microdischarge Array Device: A Novel Route to Cost-Effective and Simple Setup Microplasma Generation Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y.-J. Yang and C.-C. Hsu
Plasma Medical Science for Cancer Therapy: Toward Cancer Therapy Using Nonthermal Atmospheric Pressure Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Tanaka, M. Mizuno, K. Ishikawa, K. Takeda,
. . . . . . . . . . . . . . . . . . . . . . . . . . . K. Nakamura, F. Utsumi, H. Kajiyama, H. Kano, Y. Okazaki, S. Toyokuni, S. Maruyama, F. Kikkawa, and M. Hori

Efficient Production of Hydrogen by DBD Type Plasma Discharges . . . . . . . . . . . . . . . . . .Y. Nishida, H.-C. Chiang, T.-C. Chen, and C.-Z. Cheng
Lithium Electrochemical and Electrochromic Properties of Atmospheric Pressure Plasma Jet-Synthesized Tungsten/Molybdenum Mixed
     Oxide Films for Flexible Electrochromic Devices
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y.-S. Lin, T.-H. Tsai, and W.-H. Lu
Effect of Plasma Radical Composition in Intrinsic a-Si:H on Performances of Heterojunction Solar Cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Y.-S. Cho, C.-H. Hsu, S.-Y. Lien, D.-S. Wuu, P. Han, C.-F. Chen, and J.-H. Wang
The GaN-Based Light Emitting Diode Grown on Nanopattern Sapphire Substrate Prepared by Inductively Coupled Plasma Etching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J.-H. Lin, S.-J. Huang, Y.-K. Su, and K.-W. Huang
Nonequilibrium Modeling of Steam Plasma in a Nontransferred Direct-Current Torch . . . . . . . . . . . . . . . . S.-W. Chau, C.-M. Tai, and S.-H. Chen
Dry Reforming of CH4 With CO2 to Generate Syngas by Combined Plasma Catalysis . . . . . . . . . . . . . K. L. Pan, W. C. Chung, and M. B. Chang
Simulation of Low-Pressure Capacitively Coupled Plasmas Combining a Parallelized Particle-in-Cell Simulation and Direct Simulation
     of Monte Carlo
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. S. Kim, M. Y. Hur, I. C. Song, H.-J. Lee, and H. J. Lee
Reverse Electrical Behavior of N-Channel and P-Channel LTPS-TFTs by N2O Plasma Surface Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. C.-Y. Ma, C.-Y. Huang, T.-C. Chan, and S.-W. Yuan
Atomic Oxygen and Hydroxyl Radical Generation in Round Helium-Based Atmospheric-Pressure Plasma Jets by Various Electrode
     Arrangements and Its Application in Sterilizing Streptococcus mutans
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C.-T. Liu, C.-J. Wu, Y.-W. Yang, Z.-H. Lin, J.-S. Wu, S.-C. Hsiao, and C.-P. Lin
Hydrophilic Stability of Plastic Surfaces Treated in Low- and Atmospheric-Pressure Radio-Frequency Plasmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R.-C. Hsiao, T.-L. Sung, C.-M. Liu, S. Teii, T.-C. Chan, S. Ono, K. Teii, C.-C. Yang, and S.-C. Zeng
Direct Measurement of Metal Surface Temperature During Catalytic Dissociation of Ozone for Sensor Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T.-L. Sung, R.-C. Hsiao, C.-M. Liu, S. Teii, H.-P. Jhou, K. Teii, S. Ono, K. Ebihara, and F. Mitsugi
Effects of Oxygen Plasma and Dopamine Coating on Poly(Vinylidene Fluoride) Microfiltration Membrane for the Resistance to
    Protein Fouling
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. Yared, S.-L. Wang, and M.-J. Wang
Hydrophilic DLC Surface Induced by Nanostructures Formed by RF O2 Plasma Etching With Metal Micromasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Harigai, K. Iwasa, H. Furuta, and A. Hatta
Plasma Deposition of Diamond at Low Pressures: A Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Teii



PART II OF THREE PARTS

SPECIAL ISSUE ON PLASMA-ASSISTED TECHNOLOGIES DECEMBER 2014


GUEST EDITORIAL
Introduction to the Special Issue on Plasma-Assisted Technologies December 2014 . . . . . . . . . . . . . . . . . . . . . . . . I. B. Matveev and T. Ombrello

SPECIAL ISSUE PAPERS
Sewage Sludge-to-Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I. B. Matveev, S. I. Serbin, and N. V. Washchilenko
Ignition System Based on the Nanosecond Pulsed Discharge . . . . . . . . . . . . A. A. Tropina, A. P. Kuzmenko, S. V. Marasov, and D. V. Vilchinsky
The Breakdown Characteristics of Multigap Pseudospark Under Nanosecond Pulsed Voltages . . . . . . . . . . . . J. Zhang, J. Zhao, and Q. Zhang
Experimental Investigations of the APT-60 High-Pressure Inductively Coupled Plasma System on Different Plasma Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I. Matveev, S. Matveyeva, and S. Zverev
Plasma-Assisted Reforming of Natural Gas for GTL—Part I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. I. Serbin, I. B. Matveev, and N. A. Goncharova
MW Plasma Filaments for Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. V. Ardelyan, V. L. Bychkov, and K. V. Kosmachevskii
High-Energy Ball Lightning Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. I. Nikitin, V. L. Bychkov, T. F. Nikitina, and A. M. Velichko
Ball Lightning With a Cover Filled by a Vapor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. L. Bychkov
On Analogies Between Hydrodynamics and Electrodynamics for Plasma Technologies I . . . . . . . . . . . . . . . . . . . . .V. L. Bychkov and A. Y. Mokin
On Analogies Between Hydrodynamics and Electrodynamics for Plasma Technologies II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. L. Bychkov
Theoretical and Experimental Investigation of Semiconductor Junction Igniter . . . . . . . . . . . . B. Zhou, Y. Li, Y.-W. Cao, Z.-G. Qiao, and J. Wang
Cumulative Point—L1 Between Two Positively Charged Plasma Structures (3-D Strata) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. I. Vysikaylo

 

PART III OF THREE PARTS


REGULAR PAPERS
Basic Processes in Fully and Partially Ionized Plasmas
A Simple Method for Experimental Determination of Electron Temperature and Electron Density in Nanosecond Pulsed Longitudinal
     Discharge Used for Excitation of High-Power Lasers
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. A. Temelkov and N. K. Vuchkov

Microwave Generation and Microwave-Plasma Interaction
A New Remote Control Microwave Plasma Jet Excited by Surface Waves . . . . . P. Liu, M. Chen, J. Chen, F. Guo, S. Wang, Z. Chen, and M. Liu
Backward-Wave Suppression Analysis, and Design and Fabrication of a Prototype Millimeter-Wave Ring-Bar Slow-Wave Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Sengele, M. L. Barsanti, T. A. Hargreaves, C. M. Armstrong, J. H. Booske, and Y.-Y. Lau
Stabilized Operation of a Microwave Compressor Driven by Relativistic S-Band Magnetron . . . A. Sayapin, A. L. Levin, U. Dai, and Y. E. Krasik
Equivalent Circuit Method of Resonant System of Magnetron With Sector-and-Slot Resonant Cavities . . . . . . . . . . S. Yue, Z. Zhang, and D. Gao
Measuring the Time-Varying Channel Characteristics of the Plasma Sheath From the Reflected Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. He, Y. Zhan, N. Ge, Y. Pei, and B. Wu
Emission Behavior of Three Conditioned Carbon Fiber Cathode Types in UHV-Sealed Tubes at 200 A/cm2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. M. Parson, C. F. Lynn, J. J. Mankowski, A. A. Neuber, and J. C. Dickens
Validation of 3-D Time Domain Particle-in-Cell Simulations for Cold Testing a W-Band Gyrotron Cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A. Sawant, S. G. Kim, M.-C. Lin, J. H. Kim, Y. Hong, J. So, and E. Choi
Study on Wideband Sheet Beam Traveling Wave Tube Based on Staggered Double Vane Slow Wave Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Shi, Z. Wang, X. Tang, T. Tang, H. Gong, Q. Zhou, W. Bo, Y. Zhang, Z. Duan, Y. Wei, Y. Gong, and J. Feng

Industrial, Commercial, and Medical Applications of Plasmas

Effects of RF-Bias Power Application in an Inductively Coupled CF4 Plasma on the Nanoscale Morphology and Chemical Bond Structure
     of Polyethylene Terephthalate Surface
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W.-S. Kim, H.-W. Cheong, W. Park, and K.-W. Whang


Pulsed Power Science and Technology

Study of Mode Control in Long-Anode High-Power Pulse Magnetron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Verma, S. Maurya, and V. V. P. Singh
The Driving Conditions for Obtaining Subnanosecond High-Voltage Pulses From a Silicon-Avalanche-Shaper Diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. M. Merensky, A. F. Kardo-Sysoev, D. Shmilovitz, and A. S. Kesar

Arcs & MHD

Plasma Characteristics and Performance of Magnetohydrodynamic Generator With High-Temperature Inert Gas Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Tanaka, T. Murakami, and Y. Okuno
Arc Discharge Anode Reattachment: Simple Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V. Nemchinsky

Special Issue - Selected Papers from SOFE 2013

Parameters’ Covariance in Neutron Time of Flight Analysis—Explicit Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Odyniec and J. J. Blair

Special Issue - Images in Plasma Science 2014

Complex Plasma Structure Observed in the Inlet of an Argon Radio-Frequency Discharge . . . . . . . . . . . . . . . . . . K. M. Lemmer and D. E. Kirtley
Effect of Nanosecond Glow Discharges on a Lean Premixed V-Flame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. A. Lacoste and J. P. Moeck


COMMENTS AND CORRECTIONS
Correction to the Table of Contents for Part I of the TRANSACTIONS ON PLASMA SCIENCE October Issue
2014 INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Available online at http://ieeexplore.ieee.org
Contact & Support  |   Privacy & Opting Out of Cookies   |   Terms & Conditions   |   Nondiscrimination Policy
A non-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this newsletter signifies your agreement to the terms and conditions.
To unsubscribe from all mailings, use your IEEE Web Account to update your "Personal Profile and Communication Preferences."

Replies to this message will not reach IEEE. Due to local e-mail service/provider settings, random characters may appear in some instances.

Although the IEEE is pleased to offer the privilege of membership to individuals and groups in the OFAC embargoed countries, the IEEE cannot offer certain services to members from such countries.

IEEE
445 Hoes Lane
Piscataway, NJ 08854 USA
+1 800 678 4333 (toll free, US & Canada)
+1 732 981 0060 (Worldwide)

For more information or questions regarding your IEEE membership or IEEE Web Account, please direct your inquiries to the IEEE Contact Center.