T-NPS Header
T-PS Home  |  Editorial Board  |  T-PS in IEEE Xplore  |   Early Access  |  Manuscript Submission
FEATURED STORIES - AUGUST 2016

"Optical Study of Active Species Produced by Microwave Discharge in Water"

by Xiao-Tong Zhao, Xiao-Mei Zhu, Zhi-Yu Yan, Yong-Jun Liu, Hui Liu, and Bing Sun


Microwave plasma was generated on top of the electrode by applying microwave radiation of 2.45 GHz in water. The light-emitting region and radicals formed by microwave discharge were investigated. The experimental results showed that the light-emitting region of microwave plasma in water increased with increasing microwave power, and conversely, decreased with increasing pressure; bubble around the plasma also became small when pressure was enhanced. OH radicals, H atoms, and O atoms were identified using optical emission spectroscopic analysis. more...
-----------------------

"Beam Velocity and Density Influences on Ion-Beam Pulses Moving in Magnetized Plasmas"

by Xiao-Ying Zhao, Hong-Peng Xu, Yong-Tao Zhao, Xin Qi, and Lei Yang


The wakefield and stopping power of an ion-beam pulse moving in magnetized plasmas are investigated using particle-in-cell simulations. The effects of beam velocity and density on the wakefield and stopping power are discussed. Besides the longitudinal inverted V-shaped wakes, strong whistler waves are observed when low-density and low-velocity pulses move in plasmas in the presence of a magnetic field. The corresponding stopping powers are enhanced because of drag from these whistler waves. more...
-----------------------

"Simulations of a Disk-on-Rod TWT Driven by an NLTL-Modulated Electron Beam"

by Brad W. Hoff and David M. French


Using measured waveforms from a synchronous-wave ferrite nonlinear transmission line (NLTL), particle-in-cell simulations demonstrate the potential to emit GW-class electron beams (hundreds of kilovolts, multiple kiloamperes) with current modulations as great as 30% of the average beam current, with modulations occurring at a peak frequency equal to that of the peak NLTL output frequency. The NLTL-modulated beam is then coupled to disk-on-rod slow wave structure (SWS) simulations in which it is shown that the extractable RF generated through interaction of the modulated beam with the SWS is up to ten times greater than that directly extractable from the NLTL itself. more...
-----------------------

"Experimental Study on Microwave Power Combining Based on Injection-Locked 15-kW S-Band Continuous-Wave Magnetrons"

by Changjun Liu, Heping Huang, Zhengyu Liu, Feixiang Huo, and Kama Huang


Microwave power combining based on dual 15-kW continuous-wave (CW) magnetrons in S-band is presented. The injection locking on 15--kW CW magnetrons has been successfully accomplished. The phase-locking bandwidth of each magnetron reaches 5 MHz with an improved dc power supply. Meanwhile, phase jitters are measured and analyzed briefly. The injection-locked 15-kW magnetrons have stable magnitude and tunable locked phase, which are suitable for coherent power combining. A dual-magnetron microwave power combining system has been designed and developed with an automatic phase controlling mechanism. more...
-----------------------

"A Method for Pulse Shortening of High-Power Millimeter Waves Using Plasma Breakdown"

by Dongsung Kim, Mun Seok Choe, Dongho Yu, Ashwini Sawant, and EunMi Choi


We report an efficient pulse shortening technique of a high-power millimeter source using plasma breakdown. A W-band gyrotron with a frequency of 95 GHz and an output power of 30 kW was used for the demonstration. The pulse shortening technique was based on plasma breakdown phenomena that do not need any change in the high-power source and its modulator. The pulse shortening of a factor of 20 was demonstrated. This method may provide a simple and compact system for controlling the RF pulse length without modifying the main millimeter-wave system. more...
-----------------------

"Similarity of Properties of Metamaterial Slow-Wave Structures and Metallic Periodic Structures"

by Sabahattin C. Yurt, Ahmed Elfrgani, Mikhail I. Fuks, Kostyantyn Ilyenko and Edl Schamiloglu


A study of the evolution of wave dispersion in systems of all-metallic periodic structures with increasing corrugation depth shows a similarity of the properties of waves in metamaterial slow-wave structures (MSWSs) and traditional metallic SWSs used in high-power microwave sources. We show that the main properties of MSWSs, such as the existence of a lowest order negative dispersion wave below cutoff, also appear in ordinary metallic periodic systems with deep corrugations. Furthermore, we find that the appearance of negative dispersion in all-metallic periodic structures with increasing corrugation depth is accompanied by a hybrid mode being identified as the lowest order negative dispersion mode. more...
-----------------------

A PUBLICATION OF THE IEEE NUCLEAR AND PLASMA SCIENCES SOCIETY

AUGUST 2016   |  VOLUME 44  |  NUMBER 8  |  ITPSBD  |  (ISSN 0093-3813)

SPECIAL ISSUE ON HIGH-POWER MICROWAVE GENERATION


GUEST EDITORIAL
The Sixteenth Special Issue on High-Power Microwave Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. Seviour, D. Shiffler, J. Jelonnek, C. Grabowski, S. Hemmady, and R. L. K. Ang


SPECIAL ISSUE PAPERS
Additively Manufactured High Power Microwave Anodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. M. Jordan, G. B. Greening, B. W. Hoff, S. S. Maestas, S. C. Exelby, and R. M. Gilgenbach
Simulations of a Disk-on-Rod TWT Driven by an NLTL-Modulated Electron Beam . . . . . . . . . . . . . . . . . . . . . . . . . . . B. W. Hoff and D. M. French
Phase Locking and Mode Switching in a Backward-Wave Oscillator With Reflections . . . . . . . . . . N. M. Ryskin, V. N. Titov, and O. V. Umantsiva
L-Band Relativistic Traveling Wave Oscillator Based on a Circular Corrugated Waveguide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E. M. Totmeninov
Similarity of Properties of Metamaterial Slow-Wave Structures and Metallic Periodic Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. C. Yurt, A. Elfrgani, M. I. Fuks, K. Ilyenko, and E. Schamiloglu
Particle-in-Cell Simulations of a Multiple Beam S-Band Disk-on-Rod TWT Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . B. W. Hoff and D. M. French
Experimental Study on Microwave Power Combining Based on Injection-Locked 15-kW S-Band Continuous-Wave Magnetrons . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Liu, H. Huang, Z. Liu, F. Huo, and K. Huang
Efficient Magnetron With a Virtual Cathode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. I. Fuks, S. Prasad, and E. Schamiloglu
Improvement of Stability of High Cyclotron Harmonic Operation in the Double-Beam THz Gyrotrons . . . . . . . . . . . . . . . . . . . . . . . N. S. Ginzburg,
     . . . . . . . . M. Y. Glyavin, A. M. Malkin, V. N. Manuilov, R. M. Rozental, A. S. Sedov, A. S. Sergeev, V. Y. Zaslavsky, I. V. Zotova, and T. Idehara
Gyrotron Research at SPbPU: Diagnostics and Quality Improvement of Electron Beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . O. I. Louksha, G. G. Sominski, A. V. Arkhipov, N. V. Dvoretskaya, N. G. Kolmakova, D. B. Samsonov, and P. A. Trofimov
A Method for Pulse Shortening of High-Power Millimeter Waves Using Plasma Breakdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Kim, M. S. Choe, D. Yu, A. Sawant, and E. Choi



PART II OF TWO PARTS


REGULAR PAPERS
Basic Processes in Fully and Partially Ionized Plasmas
A Nonhomogeneous Immersed-Finite-Element Particle-in-Cell Method for Modeling Dielectric Surface Charging in Plasmas . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Han, J. Wang, and X. He
Research on the Ionization Degree of the Plasma Generated by 2A12 Aluminum Target During Hypervelocity Impact . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . E. Tang, M. Xu, Q. Zhang, S. Liu, M. Wang, S. Xiang, J. Xia, L. He, Y. Han, L. Zhang, S. Zhang, J. Yuan, and J. Wu
Investigation of the Arrayed Dielectric Barrier Discharge Reactor for PM2.5 Removal in Air . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Huang, F. Guo, J. Chen, S. Wang, Z. Hu, L. Wang, Z. Chen, and M. Liu
Dielectric Barrier Discharge Uniformity Enhancement by Air Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. Y. Khomich, V. E. Malanichev, M. V. Malashin, and S. I. Moshkunov
Local, Explicit, and Charge-Conserving Electromagnetic Particle-In-Cell Algorithm on Unstructured Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D.-Y. Na, H. Moon, Y. A. Omelchenko, and F. L. Teixeira

Microwave Generation and Microwave-Plasma Interaction
Investigation on Sheet Beam Folded V-Shape Groove Waveguide for Millimeter-Wave TWT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Tian, L. Yue, Q. Zhou, Y. Wei, Y. Wei, and Y. Gong
Optical Study of Active Species Produced by Microwave Discharge in Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X.-T. Zhao, X.-M. Zhu, Z.-Y. Yan, Y.-J. Liu, H. Liu, and B. Sun
Pulse-Shortening in a Relativistic Magnetron: The Role of Anode Block Axial Endcaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. G. Leopold, A. S. Shlapakovski, A. F. Sayapin, and Y. E. Krasik
Experimental Study of Millimeter Magnetrons With Cold Cathodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Li, T. Yan, F. Li, J. Yang, and W. Shi
PIC Simulation of the Dynamics of Electrons in a Conical Vircator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. E. Dubinov and V. P. Tarakanov
Plasma-Enabled Tuning of a Resonant RF Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Semnani, D. Peroulis, and S. O. Macheret

Charged Particle Beams and Sources
Beam Velocity and Density Influences on Ion-Beam Pulses Moving in Magnetized Plasmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X.-Y. Zhao, H.-P. Xu, Y.-T. Zhao, X. Qi, and L. Yang

Plasma Diagnostics
Time-Resolved Electron Temperature in an Argon Theta Pinch by Line Ratio Methods . . . . . . . . . . . . . . . . . . . . . . W. C. Meeks and J. L. Rovey

Pulsed Power Science and Technology
Magnetic Flux Analysis of the EAST Vertical Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Qu and G. Li
Moving Mesh FE/BE Hybrid Simulation of Electromagnetic Field Evolution for Railgun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G.-H. Wang, L. Xie, Y. He, S.-Y. Song, and J.-J. Gao
Study of High-Voltage Impulse Generation Using Piezoelectric Materials Under Elastic Wave . . . . . . . . . . . . . . . . . . . . . S. Han and C.-S. Huh
Influence of Critical Parameters on the Performance of a Superconducting Inductive Pulsed-Power Supply Circuit . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Li, C. Zhang, Y. Hu, Z. Li, M. Gao, and X. Zheng
Experiment on the Hillside Effects of Lightning Shielding of Ultrahigh Voltage Common Tower Double-Circuit Transmission Lines . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Liu, X. Wen, Y. Wang, Z. Pan, and Y. An

Space Plasmas
Electron-Acoustic Solitary Waves in a Two-Temperature Plasma Having Electrons With Kappa Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Akter, F. Deeba, and Md. Kamal-Al-Hassan


ANNOUNCEMENTS
Call for Papers-Special Issue for Selected Papers from EAPPC/BEAMS/MEGAGAUSS 2016


Accessibility | Privacy and Opting Out of Cookies | Nondiscrimination Policy

Copyright 2016 IEEE - All rights reserved. Use of this newsletter site signifies your agreement to the IEEE Terms and Conditions.
A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. [Response: Read Receipt]

If you would like to be removed from this email distribution, please [Response: Unsubscribe from List].
If you have unsubscribed in error, please [Response: Subscribe to List].
To unsubscribe from all mailings, use your IEEE Account to update your "Personal Profile and Communication Preferences."

Replies to this message will not reach IEEE. Due to local email service/provider settings, random characters may appear in some instances.

Although the IEEE is pleased to offer the privilege of membership to individuals and groups in the OFAC embargoed countries, the IEEE cannot offer certain services to members from such countries.

IEEE
445 Hoes Lane
Piscataway, NJ 08854 USA
+1 800 678 4333 (toll free, US & Canada)
+1 732 981 0060 (Worldwide)

For more information or questions regarding your IEEE Membership or IEEE Account, please direct your inquiries to the IEEE Contact Center.