T-PS Header
T-NS Home  |   Editorial Board  |   T-NS in IEEE Xplore  |    Early Access  |   Manuscript Submission
FEATURED STORIES - MARCH 2017

"Low Energy Proton SEUs in 32-nm SOI SRAMs at Low Vdd"

by Kenneth P. Rodbell, Michael S. Gordon, Kevin G. Stawiasz, Phil Oldiges, Klas Lilja and Marek Turowski


Near-threshold computing and scaling are combined to operate SRAMs in regions where they are close to being unstable. One consequence of this is an increase in single event upsets (SEUs), due to the minimal charge stored on nodes during reduced voltage operation. In this paper, both modeling and measurements [with heavy ions, MeV and low energy protons (LEPs)] are reported for a 32-nm silicon on insulator SRAM, over a range of 0.4-1.05 V. The results show that the SEU rate increases by 3X at low-supply voltages, where very LEPs are able to upset these devices. This can be a reliability concern when running SRAMs at near-threshold voltages in LEP space environments. more...
 
-----------------------

"Investigation on Beam-Blocker-Based Scatter Correction Method for Improving CT Number Accuracy"

by Hoyeon Lee, Jonghwan Min, Taewon Lee, Rizza Pua, Sohail Sabir, Kown-Ha Yoon, Hokyung Kim, and Seungryong Cho


Cone-beam computed tomography (CBCT) is gaining widespread use in various medical and industrial applications but suffers from substantially larger amount of scatter than that in the conventional diagnostic CT resulting in relatively poor image quality. Various methods that can reduce and/or correct for the scatter in the CBCT have therefore been developed. Scatter correction method that uses a beam-blocker has been considered a direct measurement-based approach providing accurate scatter estimation from the data in the shadows of the beam-blocker. To the best of our knowledge, there has been no record reporting the significance of the scatter from the beam-blocker itself in such correction methods. In this paper, we identified the scatter from the beam-blocker that is detected in the object-free projection data investigated its influence on the image accuracy of CBCT reconstructed images, and developed a scatter correction scheme that takes care of this scatter as well as the scatter from the scanned object. more...
 
-----------------------

"TDC Array Tradeoffs in Current and Upcoming Digital SiPM Detectors for Time-of-Flight PET"

by Marc-André Tétrault, Audrey Corbeil Therrien, William Lemaire, Réjean Fontaine and Jean-François Pratte


Radiation detection used in positron emission tomography (PET) exploits the timing information to remove background noise and refine position measurement through time-of-flight information. Fine time resolution in the order of 10 ps full-width at half-maximum (FWHM) would not only improve contrast in the image, but would also enable direct image reconstruction without iterative or back-projected algorithms. Currently, PET experimental setups based on silicon photomultipliers (SiPMs) reach 73 ps FWHM, where the scintillation process plays the larger role in spreading the timing resolution. This will change with the optimization of faster light emission mechanisms (prompt photons), where readout optoelectronics will once more have a noticeable contribution to the timing resolution limit. In addition to reducing electronic jitter as much as possible, other aspects of the design space must also explored, especially for digital SiPMs. Unlike traditional SiPMs, digital SiPMs can integrate circuits like time-to-digital converters (TDCs) directly with individual or groups of light sensing cells. Designers should consider the number of TDCs to integrate, the area they occupy, their power consumption, their resolution, and the impact of signal processing algorithms and find a compromise with the figure of merit and the coincidence timing resolution (CTR). This paper presents a parametric simulation flow for digital SiPM microsystems that evaluates CTR based on these aspects and on the best linear unbiased estimator (BLUE) in order to guide their design for present and future PET systems. For a small 1.1 × 1.1 × 3.0 mm3 LYSO crystal, the simulations indicate that for a low jitter digital SiPM microsystem with 18.2% photon detection efficiency, fewer than four timestamps with any multi-TDC configuration scheme nearly obtain the optimal CTR with BLUE (just below 100 ps FWHM), but with limited 5% improvement over only using the first observed photon. On the other hand, if a similar crystal but with 2.5% prompt photon 80% and 200% (depending on electronic jitter) over using only the first observed photon. In this case, a few tens of timestamps are required, yielding very different design guidelines than for standard LYSO scintillators. more...
 
-----------------------
 

A PUBLICATION OF THE IEEE NUCLEAR AND PLASMA SCIENCES SOCIETY

MARCH 2017   |  VOLUME 64  |  NUMBER 3  |  IETNAE  |  (SSN 0018-9499)

REGULAR PAPERS
Design and Optimization of a Dual-HPGe Gamma Spectrometer and Its Cosmic Veto System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. Zhang, H. Ro, C. Liu, I. Hoffman, and K. Ungar
Determination of 1-keV to 1-MeV Neutron Flux by Radiative Capture (n, γ) on92,94 Zr Dosimeters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. Sergeyeva, N. Thiollay, G. Korschinek, C. Domergue, O. Vigneau, and A. Lyoussi
Investigation on Beam-Blocker-Based Scatter Correction Method for Improving CT Number Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Lee, J. Min, T. Lee, R. Pua, S. Sabir, K.-H. Yoon, H. Kim, and S. Cho
Precision Luminosity of LHC Proton–Proton Collisions at 13 TeV Using Hit Counting With TPX Pixel Devices . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . A. Sopczak, B. Ali, T. Asawatavonvanich, J. Begera, B. Bergmann, T. Billoud, P. Burian, I. Caicedo, D. Caforio, E. Heijne, J. Janeček,
      C. Leroy,  P. Mánek,  K. Mochizuki,  Y. Mora,  J. Pacík,  C. Papadatos,  M. Platkevič,  Š. Polanský,  S. Pospíšil,  M. Suk,  and  Z. Svoboda
TDC Array Tradeoffs in Current and Upcoming Digital SiPM Detectors for Time-of-Flight PET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M.-A. Tétrault, A. C. Therrien, W. Lemaire, R. Fontaine, and J.-F. Pratte
An FPGA-Based High-Speed Error Resilient Data Aggregation and Control for High Energy Physics Experiment . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Mandal, J. Saini, W. M. Zabołotny, S. Sau, A. Chakrabarti, and S. Chattopadhyay
Real-Time Capabilities of a Digital Analyzer for Mixed-Field Assay Using Scintillation Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . M. D. Aspinall, M. J. Joyce, A. Lavietes, R. Plenteda, F. D. Cave, H. Parker, A. Jones, and V. Astromskas
Superconducting Cavity Control and Model Identification Based on Active Disturbance Rejection Control . . . . . . . . . . . . . . . . . . . . . . Z. Geng
Direct Reconstruction of CT-Based Attenuation Correction Images for PET With Cluster-Based Penalties . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. M. Kim, A. M. Alessio, B. De Man, and P. E. Kinahan
Assessment of TID Effect of FRAM Memory Cell Under Electron, X-Ray, and Co-60 γ Ray Radiation Sources . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Shen, W. Li, and Y. Zhang
Characteristic of Displacement Defects in n-p-n Transistors Caused by Various Heavy Ion Irradiations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Li, J. Yang, C. Liu, P. Li, Y. Zhao, and G. Liu
A Study on 3-in- and 10-in-Diameter Photomultiplier Tubes for the KM3NeT Project . . . . . . . . . . . . . . . . E. Leonora, V. Giordano, and S. Aiello
Gamma and Electron NIEL Dependence of Irradiated GaAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E. E. Allam, C. Inguimbert, T. Nuns, A. Meulenberg, A. Jorio, and I. Zorkani
Low Energy Proton SEUs in 32-nm SOI SRAMs at Low Vdd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. P. Rodbell, M. S. Gordon, K. G. Stawiasz, P. Oldiges, K. Lilja, and M. Turowski
A Simplified Approach for Predicting Pulsed-Laser-Induced Carrier Generation in Semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. M. Hales, A. Khachatrian, S. Buchner, N. J.-H. Roche, J. Warner, and D. McMorrow


Accessibility | Privacy and Opting Out of Cookies | Nondiscrimination Policy

Copyright 2017 IEEE - All rights reserved. Use of this newsletter site signifies your agreement to the IEEE Terms and Conditions.
A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. [Response: Read Receipt]

If you would like to be removed from this email distribution, please [Response: Unsubscribe from List].
If you have unsubscribed in error, please [Response: Subscribe to List].
To unsubscribe from all mailings, use your IEEE Account to update your "Personal Profile and Communication Preferences."

Replies to this message will not reach IEEE. Due to local email service/provider settings, random characters may appear in some instances.

Although the IEEE is pleased to offer the privilege of membership to individuals and groups in the OFAC embargoed countries, the IEEE cannot offer certain services to members from such countries.

IEEE
445 Hoes Lane
Piscataway, NJ 08854 USA
+1 800 678 4333 (toll free, US & Canada)
+1 732 981 0060 (Worldwide)

For more information or questions regarding your IEEE Membership or IEEE Account, please direct your inquiries to the IEEE Contact Center.