T-PS Header
T-NS Home  |   Editorial Board  |   T-NS in IEEE Xplore  |    Early Access  |   Manuscript Submission
FEATURED STORIES - JANUARY 2017

"Inclusion of Radiation Environment Variability in Total Dose Hardness Assurance Methodology"

by M.A. Xapsos, C. Stauffer, A. Phan, S.S. McClure, R.L. Ladbury, J. A. Pellish, M.J. Campola, and K.A. LaBel


Variability of the space radiation environment is investigated with regard to parts categorization for total dose hardness assurance methods. It is shown that it can have a significant impact. A modified approach is developed that uses current environment models more consistently and replaces the radiation design margin concept with one of failure probability during a mission. more...
 
-----------------------

"Radiation Hardening of Digital Color CMOS Camera-on-a-Chip Building Blocks for Multi-MGy Total Ionizing Dose Environments"

by Vincent Goiffon, Sébastien Rolando, Franck Corbière, Serena Rizzolo, Aziouz Chabane, Sylvain Girard, Jérémy Baer, Magali Estribeau, Pierre Magnan, Philippe Paillet, Marco Van Uffelen, Laura Mont Casellas, Robin Scott, Marc Gaillardin, Claude Marcandella, Olivier Marcelot, and Timothé Allanche


The Total Ionizing Dose (TID) hardness of digital color Camera-on-a-Chip (CoC) building blocks is explored in the Multi-MGy range using 60Co gamma-ray irradiations. The performances of the following CoC subcomponents are studied: radiation hardened (RH) pixel and photodiode designs, RH readout chain, Color Filter Arrays (CFA) and column RH Analog-to-Digital Converters (ADC). Several radiation hardness improvements are reported (on the readout chain and on dark current). CFAs and ADCs degradations appear to be very weak at the maximum TID of 6 MGy(SiO2), 600 Mrad. In the end, this study demonstrates the feasibility of a MGy rad-hard CMOS color digital camera-on-a-chip, illustrated by a color image captured after 6 MGy(SiO2) with no obvious degradation. An original dark current reduction mechanism in irradiated CMOS Image Sensors is also reported and discussed. more...
 
-----------------------

"Total Ionizing Dose Effects on Strained Ge pMOS FinFETs on Bulk Si"

by En Xia Zhang, Daniel M. Fleetwood, Jordan A. Hachtel, Chundong Liang, Robert A. Reed, Michael L. Alles, Ronald D. Schrimpf, Dimitri Linten, Jerome Mitard, Matthew F. Chisholm, and Sokrates T. Pantelides


We have characterized the total ionizing dose response of strained Ge pMOS FinFETs built on bulk Si using a fin replacement process. Devices irradiated to 1.0 Mrad (SiO2) show minimal transconductance degradation (less than 5%), very small Vt h shifts (less than 40 mV in magnitude) and very little ON/OFF current ratio degradation (less than 5%), and only modest variation in radiation response with transistor geometry (typically less than normal part-to-part variation). Both before and after irradiation, the performance of these strained Ge pMOS FinFETs is far superior to that of past generations of planar Ge pMOS devices. These improved properties result from significant improvements in processing technology, as well as the enhanced gate control provided by the strained Ge FinFET technology. more...
 
-----------------------

"Single Event Upsets Induced by Direct Ionization from Low-Energy Protons in Floating Gate Cellsy"

by Marta Bagatin, Simone Gerardin, Alessandro Paccagnella, Angelo Visconti, Ari Virtanen, Heikki Kettunen, Alessandra Costantino, Véronique Ferlet-Cavrois, and Ali Zadeh


Floating gate cells in advanced NAND Flash memories, with single-level and multi-level cell architecture, were exposed to low-energy proton beams. The first experimental evidence of single event upsets by proton direct ionization in floating gate cells is reported. The dependence of the error rate versus proton energy is analyzed in a wide energy range. Proton direct ionization events are studied and energy loss in the overlayers is discussed. The threshold LET for floating gate errors in multi-level and single-level cell devices is modeled and technology scaling trends are analyzed, also discussing the impact of the particle track size more...
 
-----------------------
 

A PUBLICATION OF THE IEEE NUCLEAR AND PLASMA SCIENCES SOCIETY

JANUARY 2017   |  VOLUME 64  |  NUMBER 1  |  IETNAE  |  (SSN 0018-9499)

PART I OF TWO PARTS


NUCLEAR AND SPACE RADIATION EFFECTS CONFERENCE (NSREC) Portland, OR, USA, July 11-15, 2016
EDITORIAL
Editorial Conference Comments by the General Chair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. A. Reed
Special NSREC 2016 Issue of the IEEE TRANSACTIONS ON NUCLEAR SCIENCE Comments by the Editors . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . D. M. Fleetwood, D. Brown, S. Girard, S. Gerardin, H. Quinn, D. Kobayashi, I. S. Esqueda, and W. Robinson

LIST OF REVIEWERS
NSREC 2016 Special Issue of the IEEE TRANSACTIONS ON NUCLEAR SCIENCE List of Reviewers


AWARDS
2016 IEEE Nuclear and Space Radiation Effects Conference Awards Comments by the Chairman . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. Pouget
Outstanding Conference Paper Award: 2016 IEEE Nuclear and Space Radiation Effects Conference


IN MEMORIAM
In Memoriam Xiaojie Chen
In Memoriam Orlie L. Curtis, Jr.


PHOTONIC DEVICES AND INTEGRATED CIRCUITS
In-Depth Analysis on Radiation Induced Multi-Level Dark Current Random Telegraph Signal in Silicon Solid State Image
     Sensors
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Durnez, V. Goiffon, C. Virmontois, J.-M. Belloir, P. Magnan, and L. Rubaldo
Dark Current Spectroscopy in Neutron, Proton and Ion Irradiated CMOS Image Sensors: From Point Defects to Clusters . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . J.-M. Belloir, V. Goiffon, C. Virmontois, P. Paillet, M. Raine, R. Molina, C. Durnez, O. Gilard, and P. Magnan
Radiation Effects in Pinned Photodiode CMOS Image Sensors: Variation of Epitaxial Layer Thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . C. Virmontois, C. Durnez, M. Estribeau, P. Cervantes, B. Avon, V. Goiffon, P. Magnan, A. Materne, and A. Bardoux
Radiation Hardening of Digital Color CMOS Camera-on-a-Chip Building Blocks for Multi-MGy Total Ionizing Dose Environments . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. Goiffon, S. Rolando, F. Corbière, S. Rizzolo, A. Chabane, S. Girard, J. Baer,
     M. Estribeau, P. Magnan, P. Paillet, M. Van Uffelen, L. Mont Casellas, R. Scott, M. Gaillardin, C. Marcandella, O. Marcelot,  and  T. Allanche

Radiation Hardened Architecture of a Single-Ended Raman-Based Distributed Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Di Francesca, S. Girard, I. Planes, A. Cebollada,
     G. Li Vecchi, A. Alessi, I. Reghioua, C. Cangialosi, A. Ladaci, S. Rizzolo, V. Lecoeuche,  A. Boukenter,  A. Champavère,  and  Y. Ouerdane

Evaluation of Distributed OFDR-Based Sensing Performance in Mixed Neutron/Gamma Radiation Environments . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Rizzolo, A. Boukenter, E. Marin,
     T. Robin, M. Cannas, A. Morana,  J. Périsse,  J-R Macé, Y. Ouerdane,  B. Nacir,  P. Paillet,  C. Marcandella,  M. Gaillardin,  and  S. Girard

Radiation-Hardened Fiber Bragg Grating Based Sensors for Harsh Environments . . . . . . . . . . . . . . A. Morana, S. Girard, E. Marin, J. Périsse,
     . . . . . J. S. Genot, J. Kuhnhenn, J. Grelin, L. Hutter, G. Mélin, L. Lablonde, T. Robin, B. Cadier, J.-R. Macé, A. Boukenter, and Y. Ouerdane

More Accurate Quantum Efficiency Damage Factor for Proton-Irradiated, III-V-Based Unipolar Barrier Infrared Detectors . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. P. Morath, E. A. Garduno, V. M. Cowan, and G. Jenkins

SINGLE-EVENT EFFECTS: TRANSIENT CHARACTERIZATION
Detailed SET Measurement and Characterization of a 65 nm Bulk Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . M. Glorieux, A. Evans, V. Ferlet-Cavrois, C. Boatella-Polo, D. Alexandrescu, S. Clerc, G. Gasiot, and P. Roche
Single-Event Transient Response of Comparator Pre-Amplifiers in a Complementary SiGe Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Ildefonso, N. E. Lourenco, Z. E. Fleetwood, M. T. Wachter, G. N. Tzintzarov,
     A. S. Cardoso, N. J.-H. Roche, A. Khachatrian, D. McMorrow, S. P. Buchner, J. H. Warner, P. Paki, M. Kaynak, B. Tillack, and J. D. Cressler

Application of a Focused, Pulsed X-Ray Beam to the Investigation of Single-Event Transients in Al0.3Ga0.7N/GaN HEMTs . . . . . . . . . . . . . . . .
      . . . . . . . . . . A. Khachatrian, N. J.-H. Roche, S. P. Buchner, A. D. Koehler, T. J. Anderson, K. D. Hobart, D. McMorrow, S. D. LaLumondiere,
     N. P. Wells,   J. Bonsall,   E. C. Dillingham,   P. Karuza,  D. L. Brewe,  W. T. Lotshaw,  S. C. Moss,  V. Ferlet-Cavrois,   and   M. Muschitiello

Analysis of Single-Event Effects in a Radiation-Hardened Low-Jitter PLL Under Heavy Ion and Pulsed Laser Irradiation . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Chen, M. Lin, D. Ding, Y. Zheng, Z. Sang, and S. Zou
Single Event Transient and TID Study in 28 nm UTBB FDSOI Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . R. Liu, A. Evans, L. Chen, Y. Li, M. Glorieux, R. Wong, S.-J.Wen, J. Cunha, L. Summerer, and V. Ferlet-Cavrois
Characterization of Single-Event Transient Pulse Broadening Effect in 65 nm Bulk Inverter Chains Using Heavy Ion Microbeam . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Chi, R. Song, S. Shi, B. Liu, L. Cai, C. Hu, and G. Guo
Single-Event Effects in High-Frequency Linear Amplifiers: Experiment and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Zeinolabedinzadeh,
     H. Ying, Z. E. Fleetwood, N. J.-H.Roche, A. Khachatrian, D. McMorrow, S. P. Buchner,  J. H. Warner,  P. Paki-Amouzou,  and  J. D. Cressler

BASIC MECHANISMS OF RADIATION EFFECTS
Simulation of Single Particle Displacement Damage in Silicon – Part I: Global Approach and Primary Interaction Simulation . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Raine, A. Jay, N. Richard, V. Goiffon, S. Girard, M. Gaillardin, and P. Paillet
Simulation of Single Particle Displacement Damage in Silicon–Part II: Generation and Long-Time Relaxation of Damage Structure . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Jay, M. Raine, N. Richard, N. Mousseau, V. Goiffon, A. Hémeryck, and P. Magnan
Displacement Damage in Bipolar Junction Transistors: Beyond Messenger-Spratt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. J. Barnaby, R. D. Schrimpf, K. F. Galloway, X. Li, J. Yang, and C. Liu
Theory of Quantum Transport in Graphene Devices With Radiation Induced Coulomb Scatterers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. W. LaGasse, C. D. Cress, H. L. Hughes, and J. U. Lee
Total Ionizing Dose (TID) Effects in GaAs MOSFETs With La-Based Epitaxial Gate Dielectrics . . . . . . . . . . . . . . . . . . . . . S. Ren, M. A. Bhuiyan,
     J. Zhang, X. Lou, M. Si, X. Gong, R. Jiang, K. Ni, X. Wan, E. X. Zhang,  R. G. Gordon,  R. A. Reed,  D. M. Fleetwood,  P. Ye,  and  T. P. Ma

Total Ionizing Dose Effects on HfO2-Passivated Black Phosphorus Transistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Liang, Y. Su, E. X. Zhang, K. Ni, M. L. Alles, R. D. Schrimpf, D. M. Fleetwood, and S. J. Koester
Total Ionizing Dose (TID) Effects in Ultra-Thin Body Ge-on-Insulator (GOI) Junctionless CMOSFETs With Recessed Source/Drain
     and Channel
. . . . . . . . . . . . . S. Ren, M. A. Bhuiyan, H. Wu, R. Jiang, K. Ni, E. X. Zhang, R. A. Reed, D. M. Fleetwood, P. Ye, and T. P. Ma
1/f Noise in As-Processed and Proton-Irradiated AlGaN/GaN HEMTs Due to Carrier Number Fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. Wang, R. Jiang, J. Chen, E. X. Zhang, M. W. McCurdy, R. D. Schrimpf, and D. M. Fleetwood
Comparison of Gain Degradation and Deep Level Transient Spectroscopy in pnp Si Bipolar Junction Transistors Irradiated With Different
     Ion Species
. . . . . . . . . . . . B. A. Aguirre, E. Bielejec, R. M. Fleming, G. Vizkelethy, B. Vaandrager, J. Campbell, W. J. Martin, and D. B. King
Ionizing Radiation Effects in 4H-SiC nMOSFETs Studied With Electrically Detected Magnetic Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. J. Waskiewicz, M. A. Anders, P. M. Lenahan, and A. J. Lelis

RADIATION EFFECTS IN DEVICES AND INTEGRATED CIRCUITS
Combined Effects of Total Ionizing Dose and Temperature on a K-Band Quadrature LC-Tank VCO in a 32 nm CMOS SOI Technology . . . . . . .
      . . . . . . . . . . . . . . . . . . T. D. Loveless, S. Jagannathan, E. X. Zhang, D. M. Fleetwood, J. S. Kauppila, T. D. Haeffner, and L. W. Massengill
Low-Energy Electron Irradiation of NAND Flash Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . M. J. Gadlage, A. H. Roach, J. M. Labello, M. R. Halstead, M. J. Kay, A. R. Duncan, J. D. Ingalls, D. P. Bossev, and J. P. Rogers
Worst-Case Bias for Proton and 10-keV X-Ray Irradiation of AlGaN/GaN HEMTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. Jiang, E. X. Zhang,
     M. W. McCurdy, J. Chen, X. Shen, P. Wang, D. M. Fleetwood, R. D. Schrimpf, S. W. Kaun, E. C. H. Kyle, J. S. Speck, and  S. T. Pantelides

Total Ionizing Dose Effects on Strained Ge pMOS FinFETs on Bulk Si . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E. X. Zhang,
     D. M. Fleetwood, J. A. Hachtel, C. Liang, R. A. Reed, M. L. Alles, R. D. Schrimpf, D. Linten, J. Mitard, M. F. Chisholm, and  S. T. Pantelides

Total-Ionizing-Dose Effects on Piezoelectric Micromachined Ultrasonic Transducers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . W. Liao, E. X. Zhang, M. L. Alles, C. X. Zhang, H. Gong, K. Ni, A. L. Sternberg, H. Xie, D. M. Fleetwood, R. A. Reed, and R. D. Schrimpf
Gate Bias and Geometry Dependence of Total-Ionizing-Dose Effects in InGaAs Quantum-Well MOSFETs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Ni, E. X. Zhang, R. D. Schrimpf, D. M. Fleetwood, R. A. Reed, M. L. Alles, J. Lin, and J. A. del Alamo
Comparison of a 65 nm CMOS Ring- and LC-Oscillator Based PLL in Terms of TID and SEU Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Prinzie, J. Christiansen, P. Moreira, M. Steyaert, and P. Leroux
Low Energy Proton Irradiation Effects on Commercial Enhancement Mode GaN HEMTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     X. Wan, O. K. Baker, M. W. McCurdy, E. X. Zhang, M. Zafrani, S. P. Wainwright, J. Xu, H. L. Bo, R. A. Reed, D. M. Fleetwood,  and  T. P. Ma
Degradation Characteristics of Normally-Off p-AlGaN Gate AlGaN/GaN HEMTs With 5 MeV Proton Irradiation . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. M. Keum, H.-k. Sung, and H. Kim
Total-Ionizing-Dose Effects in Piezoresistive Micromachined Cantilevers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Gong, W. Liao, E. X. Zhang, A. L. Sternberg, M. W. McCurdy, J. L. Davidson,
     R. A. Reed,   D. M. Fleetwood,   R. D. Schrimpf,   P. D. Shuvra,   J.-T. Lin,  S. McNamara,  K. M. Walsh,  B. W. Alphenaar,  and  M. L. Alles

Total-Ionizing-Dose Effects on Resistance Stability of Programmable Metallization Cell Based Memory and Selectors . . . . . . . . . . . . W. Chen,
     R. Fang,   H. J. Barnaby,   M. B. Balaban,   Y. Gonzalez-Velo,  J. L. Taggart,  A. Mahmud,  K. Holbert,  A. H. Edwards,  and  M. N. Kozicki

Total Ionizing Dose Effects on a High-Voltage (>30V) Complementary SiGe on SOI Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. P. Omprakash, Z. E. Fleetwood, U. S. Raghunathan,
     A. Ildefonso, A. S. Cardoso, N. E. Lourenco, J. Babcock, R. Mukhopadhyay, E. X. Zhang, P. J. McMarr, D. M. Fleetwood, and J. D. Cressler

Analysis of TID Process, Geometry, and Bias Condition Dependence in 14-nm FinFETs and Implications for RF and SRAM Performance . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. P. King, X. Wu, M. Eller, S. Samavedam, M. R. Shaneyfelt, A. I. Silva, B. L. Draper, W. C. Rice,
      T. L. Meisenheimer,  J. A. Felix,  E. X. Zhang,  T. D. Haeffner,  D. R. Ball,  K. J. Shetler,  M. L. Alles,  J. S. Kauppila,  and  L. W. Massengill

RADIATION HARDNESS ASSURANCE
CubeSats and Crowd-Sourced Monitoring for Single Event Effects Hardness Assurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . B. D. Sierawski, K. M. Warren, A. L. Sternberg, R. A. Austin, J. M. Trippe, M. W. McCurdy, R. A. Reed, R. A. Weller,
     M. L. Alles, R. D. Schrimpf, L. W. Massengill, D. M. Fleetwood, A. Monteiro, G. W. Buxton, III, J. C. Brandenburg, W. B. Fisher, and R. Davis

Evaluating Constraints on Heavy-Ion SEE Susceptibility Imposed by Proton SEE Testing and Other Mixed Environments . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. L. Ladbury and J.-M. Lauenstein
Proton on Metal Fission Environments in an IC Package: An RHA Evaluation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . T. L. Turflinger, D. A. Clymer, L. W. Mason, S. Stone, J. S. George, R. Koga, E. Beach, and K. Huntington
Response Variability in Commercial MOSFET SEE Qualification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. S. George,
     D. A. Clymer,   T. L. Turflinger,   L. W. Mason,   S. Stone,   R. Koga,  E. Beach,  K. Huntington,  J.-M. Lauenstein,  J. Titus,   and   M. Sivertz

Inclusion of Radiation Environment Variability in Total Dose Hardness Assurance Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . M. A. Xapsos, C. Stauffer, A. Phan, S. S. McClure, R. L. Ladbury, J. A. Pellish, M. J. Campola, and K. A. LaBel
Heavy Ion Irradiation Fluence Dependence for Single-Event Upsets in a NAND Flash Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Chen, E. Wilcox, R. L. Ladbury, H. Kim, A. Phan, C. Seidleck, and K. A. LaBel
Robust Duplication With Comparison Methods in Microcontrollers . . . . . . . . . . . . . . . H. Quinn, Z. Baker, T. Fairbanks, J. L. Tripp, and G. Duran
The Development of a High Sensitivity Neutron Displacement Damage Sensor . . . . . . . . . . . . . . . . A. M. Tonigan, E. J. Parma, and W. J. Martin

RADIATION HARDENING BY DESIGN
Charge-Steering Latch Design in 16 nm FinFET Technology for Improved Soft Error Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Narasimham, K. Chandrasekharan, J. K. Wang, K. Ni, B. L. Bhuva, and R. D. Schrimpf
The Use of Inverse-Mode SiGe HBTs as Active Gain Stages in Low-Noise Amplifiers for the Mitigation of Single-Event Transients. . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. Song,
     M.-K. Cho, N. E. Lourenco, Z. E. Fleetwood, S. Jung, N. J.-H. Roche, A. Khachatrian, S. P. Buchner, D. McMorrow, P. Paki, and J. D. Cressler

Evaluation of SEU Performance of 28-nm FDSOI Flip-Flop Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H.-B. Wang, J. S. Kauppila,
     K. Lilja,  M. Bounasser,  L. Chen,  M. Newton, Y.-Q. Li, R. Liu, B. L. Bhuva,  S.-J. Wen,  R. Wong,  R. Fung,  S. Baeg,  and  L. W. Massengill

A Hybrid Fault-Tolerant LEON3 Soft Core Processor Implemented in Low-End SRAM FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Lindoso, L. Entrena, M. García-Valderas, and L. Parra
Ionizing Dose-Tolerant Enhancement-Mode Cascode for High-Voltage Power Devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. F. Witulski, A. L. Sternberg, J. D. Rowe, R. D. Schrimpf, J. Zydel, and J. Schaf

SINGLE-EVENT EFFECTS: MECHANISMS AND MODELING
Proton Dominance of Sub-LET Threshold GCR SEE Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. G. Alía, M. Brugger, V. Ferlet-Cavrois,
     S. Brandenburg,  J. Calcutt,  F. Cerutti,  E. Daly,  A. Ferrari,  M. Muschitiello,  G. Santin,  S. Uznanski,  M.-J. Van Goethem,  and  A. Zadeh

Using TCAD Modeling to Compare Heavy-Ion and Laser-Induced Single Event Transients in
     SiGe HBTs
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. E. Fleetwood, N. E. Lourenco, A. Ildefonso, J. H. Warner,
     M. T. Wachter,  J. M. Hales,  G. N. Tzintzarov,  N. J.-H. Roche, A. Khachatrian,  S. P. Buchner,  D. McMorrow,  P. Paki,  and  J. D. Cressler

The Impact of Technology Scaling on the Single-Event Transient Response of SiGe HBTs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. E. Lourenco, Z. E. Fleetwood, A. Ildefonso, M. T. Wachter, N. J.-H. Roche,
     A. Khachatrian,   D. McMorrow,   S. P. Buchner,  J. H. Warner,  H. Itsuji,  D. Kobayashi,  K. Hirose,  P. Paki,  A. Raman,  and  J. D. Cressler

Heavy Ion Induced Degradation in SiC Schottky Diodes: Bias and Energy Deposition Dependence. . . . . . . . . . . . A. Javanainen, K. F. Galloway,
     C. Nicklaw,   A. L. Bosser,   V. Ferlet-Cavrois,   J.-M. Lauenstein,  F. Pintacuda,  R. A. Reed,  R. D. Schrimpf,  R. A. Weller,  and  A. Virtanen

Upsets in Erased Floating Gate Cells With High-Energy Protons. . . . . . . . . . . . . . . . . . . . . . S. Gerardin, M. Bagatin, A. Paccagnella, A. Visconti,
     M. Bonanomi, M. Calabrese, L. Chiavarone, V. Ferlet-Cavrois, J. R. Schwank, M. R. Shaneyfelt, N. Dodds, M. Trinczek,  and  E. Blackmore

The Power Law Shape of Heavy Ions Experimental Cross Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F. Wrobel, A. D. Touboul, V. Pouget, L. Dilillo, E. Lorfèvre, and F. Saignè
Single-Event Measurement and Analysis of Antimony-Based p-Channel Quantum-Well MOSFETs With High-κ Dielectric. . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Barth, A. Kumar, J. H. Warner,
     B. R. Bennett,   C. D. Cress,   J. B. Boos,   N. J.-H. Roche,  M. Raine,  M. Gaillardin,  P. Paillet,  D. McMorrow,  K. Saraswat,  and  S. Datta

Analysis of Bulk FinFET Structural Effects on Single-Event Cross Sections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . P. Nsengiyumva, L. W. Massengill, M. L. Alles, B. L. Bhuva, D. R. Ball, J. S. Kauppila, T. D. Haeffner, W. T. Holman, and R. A. Reed

SINGLE-EVENT EFFECTS: DEVICES AND INTEGRATED CIRCUITS
On-Orbit Upset Rate Prediction at Advanced Technology Nodes: A 28 nm FD-SOI Case Study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. Malherbe, G. Gasiot, D. Soussan, J.-L. Autran, and P. Roche
Effects of Threshold Voltage Variations on Single-Event Upset Response of Sequential Circuits at Advanced Technology Nodes. . . . . . . . . . . .
      . . . . . . . . . . . . . H. Zhang, H. Jiang, T. R. Assis, N. N. Mahatme, B. Narasimham, L. W. Massengill, B. L. Bhuva, S.-J. Wen, and R. Wong
Single Event Upsets Induced by Direct Ionization from Low-Energy Protons in Floating Gate Cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . M. Bagatin, S. Gerardin, A. Paccagnella, A. Visconti, A. Virtanen, H. Kettunen, A. Costantino, V. Ferlet-Cavrois, and A. Zadeh
Effects of Total-Ionizing-Dose Irradiation on SEU- and SET-Induced Soft Errors in Bulk 40-nm Sequential Circuits. . . . . . . . . . . . . R. M. Chen,
     Z. J. Diggins, N. N. Mahatme, L. Wang, E. X. Zhang, Y. P. Chen, Y. N. Liu, B. Narasimham, A. F. Witulski, B. L. Bhuva, and D. M. Fleetwood

Single-Event Performance of Sense-Amplifier Based Flip-Flop Design in a 16-nm Bulk FinFET CMOS Process. . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Jiang, H. Zhang, T. R. Assis, B. Narasimham, B. L. Bhuva, W. T. Holman, and L. W. Massengill
Radiation Experiments on a 28 nm Single-Chip Many-Core Processor and SEU Error-Rate Prediction. . . . . . . . . . . . . . . . . . . . . . . . . V. Vargas,
     P. Ramos, V. Ray, C. Jalier, R. Stevens, B. Dupont De Dinechin, M. Baylac, F. Villa, S. Rey, N.-E. Zergainoh, J.-F. Méhaut,  and  R. Velazco

Angular Effects of Heavy-Ion Strikes on Single-Event Upset Response of Flip-Flop Designs in 16-nm Bulk FinFET Technology . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Zhang, H. Jiang, T. R. Assis, D. R. Ball, B. Narasimham, A. Anvar, L. W. Massengill, and B. L. Bhuva
A Hybrid Approach to FPGA Configuration Scrubbing . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Stoddard, A. Gruwell, P. Zabriskie, and M. J. Wirthlin
Heavy-Ion Micro Beam and Simulation Study of a Flash-Based FPGA Microcontroller Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . A. Evans, C. Urbina Ortega, K. Marinis, E. Costenaro, H. Laroussi, K.-V. Obbe, G. Magistrati, and V. Ferlet-Cavrois
Persistent Laser-Induced Leakage in a 20 nm Charge-Pump Phase-Locked Loop (PLL) . . . . . . . . . . Y. P. Chen, T. D. Loveless, A. L. Sternberg,
     E. X. Zhang,   J. S. Kauppila,   B. L. Bhuva,   W. T. Holman,  M. L. Alles,  R. A. Reed,  D. McMorrow,  R. D. Schrimpf, and  L. W. Massengill

Benefits of Complementary SEU Mitigation for the LEON3 Soft Processor on SRAM-Based FPGAs . . . . . . . . . . . . A. M. Keller and M. J. Wirthlin
Single Event Effects in Si and SiC Power MOSFETs Due to Terrestrial Neutrons . . . . . . . . . . . . A. Akturk, R. Wilkins, J. McGarrity, and B. Gersey
Single-Event Effects in a Millimeter-Wave Receiver Front-End Implemented in 90 nm, 300 GHz SiGe HBT Technology . . . . . . . . . . . . . . . . . . . .      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Zeinolabedinzadeh, A. C. Ulusoy, F. Inanlou, H. Ying,
     Y. Gong, Z. E. Fleetwood, N. J.-H. Roche, A. Khachatrian,D. McMorrow, S. P. Buchner, J. H. Warner, P. Paki-Amouzou,  and  J. D. Cressler

DOSIMETRY
Demonstration of a Passive Wireless Radiation Detector Using Fully-Depleted Silicon-on-Insulator Variable Capacitors . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Li, V. R. S. K. Chaganti, M. A. Reynolds, B. J. Gerbi, and S. J. Koester
The Role of Sample Geometry on Ultra-Low Alpha Particle Emissivity Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. S. Gordon, K. P. Rodbell, C. E. Murray, and B. D. McNally
Total Dose Measurement Circuit Design Based on a Voltage Reference Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . K. J. Shetler, W. T. Holman, J. S. Kauppila, A. F. Witulski, B. L. Bhuva, E. X. Zhang, and L. W. Massengill
Potential of Copper- and Cerium-Doped Optical Fiber Materials for Proton Beam Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Girard, B. Capoen, H. El Hamzaoui, M. Bouazaoui, G. Bouwmans, A. Morana,
     D. Di Francesca, A. Boukenter, O. Duhamel,  P. Paillet,  M. Raine,  M. Gaillardin, M. Trinczek,  C. Hoehr,  E. Blackmore,  and  Y. Ouerdane

Influence of the Damage Partition Function on the Uncertainty of the Silicon Displacement Damage Metric . . . . . . . P. J. Griffin and P. J. Cooper
In-Situ Measurement of Total Ionising Dose Induced Changes in Threshold Voltage and Temperature Coefficients of RADFETs . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Hofman, A. Jaksic, R. Sharp, N. Vasovic, and J. Haze

SPACE AND TERRESTRIAL RADIATION ENVIRONMENTS
New Data and Modelling for Single Event Effects in the Stratospheric Radiation Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Hands, F. Lei, K. Ryden, C. Dyer, C. Underwood, and C. Mertens
Monte Carlo Evaluation of Single Event Effects in a Deep-Submicron Bulk Technology: Comparison Between Atmospheric and
     Accelerator Environment
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Infantino, R. G. Alía, and M. Brugger
Shielding an MCP Detector for a Space-Borne Mass Spectrometer Against the Harsh Radiation Environment in Jupiter’s Magnetosphere . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Lasi, M. Tulej, S. Meyer, M. Lüthi, A. Galli,
     D. Piazza,  P. Wurz,  D. Reggiani,  H. Xiao, R. Marcinkowski, W. Hajdas, A. Cervelli,  S. Karlsson,  T. Knight,  M. Grande,  and  S. Barabash

Improvements of FLUKA Calculation of the Neutron Albedo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. Combier, A. Claret, P. Laurent, V. Maget, D. Boscher, A. Ferrari, and M. Brugger
Ground Albedo Neutron Impacts to Seasonal Variations of Cosmic-Ray-Induced Neutron in Medium Geomagnetic Latitude and Antarctica:
     Impacts on Soft Error Rate
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Hubert


Conference Author Index


 

PART II OF TWO PARTS


REGULAR PAPERS
Characterization of Single-Event Transients in Schmitt Trigger Inverter Chains Operating at Subthreshold Voltages . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. J. Gadlage, J. R. Ahlbin, P. Gadfort, A. H. Roach, and S. Stansberry
Fast and Thermal Neutron Radiation Effects on GaN PIN Diodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Lv, P. Li, X. Ma, L. Liu, L. Yang, X. Zhou, J. Zhang, Y. Cao, Z. Bi, T. Jiang, Q. Zhu, and Y. Hao
Total Ionizing Dose Effects on a 12-bit 40kS/s SAR ADC Designed With a Dummy Gate-Assisted n-MOSFET . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. H. Kim and H. C. Lee
Recoil-Ion-Induced Single Event Upsets in Nanometer CMOS SRAM Under Low-Energy Proton Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Wu, S. Chen, J. Yu, J. Chen, P. Huang, and R. Song
Proton-Induced Radiation Damage in Fast Crystal Scintillators . . . . . . . . . F. Yang, L. Zhang, R.-Y. Zhu, J. Kapustinsky, R. Nelson, and Z. Wang
Total Ionizing Dose Response of Hafnium-Oxide Based MOS Devices to Low-Dose-Rate Gamma Ray Radiation Observed by Pulse CV
     and On-Site Measurements
. . . . . . . . . . . . . . . . . Y. Mu, C. Z. Zhao, Q. Lu, C. Zhao, Y. Qi, S. Lam, I. Z. Mitrovic, S. Taylor, and P. R. Chalker
Single Event Upset Sensitivity of D-Flip Flop: Comparison of PDSOI With Bulk Si at 130 nm Technology Node . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Zhang, J. Xu, S. Fan, L. Dai, D. Bi, J. Lu, Z. Hu, M. Zhang, and Z. Zhang
Accelerated Tests of Soft Errors in Network Systems Using a Compact Accelerator-Driven Neutron Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . H. Iwashita, H. Sato, K. Arai, T. Kotanigawa, K. Kino, T. Kamiyama, F. Hiraga, K. Koda, M. Furusaka, and Y. Kiyanagi
A High-Linearity, Ring-Oscillator-Based, Vernier Time-to-Digital Converter Utilizing Carry Chains in FPGAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Cui, Z. Ren, X. Li, Z. Liu, and R. Zhu
Scanner-Dependent Threshold Estimation of Wavelet Denoising for Small-Animal PET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Zhao, J.-S. Lee, H. Xu, K. Xu, Z.-H. Ren, J.-C. Chen, and C.-H. Wu
Nonlinear Fractional Sliding Mode Controller Based on Reduced Order FNPK Model for Output Power Control of Nuclear Research
     Reactors
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. Zare Davijani, G. Jahanfarnia, and A. Esmaeili Abharian
Kinetic Parameter Measurements in the MINERVE Reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Perret, B. Geslot, A. Gruel, P. Blaise, J. Di-Salvo, G. De Izarra, C. Jammes, M. Hursin, and A. Pautz
An Information-Theoretical Approach to Image Resolution Applied to Neutron Imaging Detectors Based Upon Individual Discriminator
     Signals
. . . . . . . . . . . . . . . J.-F. Clergeau, M. Ferraton, B. Guérard, A. Khaplanov, F. Piscitelli, M. Platz, J.-M. Rigal, P. Van Esch, and T. Daullé

Accessibility | Privacy and Opting Out of Cookies | Nondiscrimination Policy

Copyright 2016 IEEE - All rights reserved. Use of this newsletter site signifies your agreement to the IEEE Terms and Conditions.
A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. [Response: Read Receipt]

If you would like to be removed from this email distribution, please [Response: Unsubscribe from List].
If you have unsubscribed in error, please [Response: Subscribe to List].
To unsubscribe from all mailings, use your IEEE Account to update your "Personal Profile and Communication Preferences."

Replies to this message will not reach IEEE. Due to local email service/provider settings, random characters may appear in some instances.

Although the IEEE is pleased to offer the privilege of membership to individuals and groups in the OFAC embargoed countries, the IEEE cannot offer certain services to members from such countries.

IEEE
445 Hoes Lane
Piscataway, NJ 08854 USA
+1 800 678 4333 (toll free, US & Canada)
+1 732 981 0060 (Worldwide)

For more information or questions regarding your IEEE Membership or IEEE Account, please direct your inquiries to the IEEE Contact Center.