T-PS Header
T-NS Home  |   Editorial Board  |   T-NS in IEEE Xplore  |    Early Access  |   Manuscript Submission
FEATURED STORIES - DECEMBER 2016

"T12LiYC16:Ce: A New Elpasolite Scintillator"

by R. Hawrami, E. Ariesanti, L. Soundara-Pandian, J. Glodo, and K. S. Shah


T12LiYC16:Ce (TLYC), a new cerium dopedthallium based, dual mode gamma and neutron elpasolite scintillation crystal, has been grown and evaluated at RMD. Energy resolution of 4.2% at 662 keV (FWHM) is measured for samples of this material. From comparison with a 137Cs spectrum collected with NaI:Tl, a gamma-ray induced light yield of 26,000 ph/MeV is estimated for TLYC. The material also shows better proportionality of response than both LaBr3:Ce and NaI:Tl in the energy range between 32 keV to 1275 keV. Single thermal neutron interactions produce a peak measured at a gamma equivalent energy of 1.9 MeVee, corresponding to a (neutron induced) light yield of approximately 47,000 ph/n. Decay times obtained from gamma-ray interactions in TLYC are measured at about 57 ns, 431 ns, and 1055 ns, with slightly shorter values measured for neutron interactions. These differences allow for gamma-neutron pulse shape discrimination (PSD) and a PSD Figure-of-Merit (FOM) of 2 is measured with TLYC. more...
 
-----------------------

"Characterization of Solar Energetic H and He Spectra Measured by the Energetic Particle Telescope (EPT) On-Board PROBA-V During the January 2014 SEP Event"

by Sylvie Benck, Stanislav Borisov, Mathias Cyamukungu, Hugh Evans, and Petteri J. Nieminen


On January 6, 2014 a Solar Energetic Particle (SEP) event started that led to a 1030 cm-2s-1sr-1 peak flux of E > 10 MeV protons on January 9, 2014 at geosynchronous orbit, an event exceeded only by about 15% of all SEP events. Such high flux events contribute the most to solar event-induced radiation effects in space equipment, while being easy to characterize based on data acquired by spectrometers, such as the EPT. The EPT instrument provides fluxes of electrons (0.5-20 MeV), H (9.5-300 MeV) and He (38-1200 MeV) ions. It presently flies on the PROBA-V satellite, launched into a Low Earth Orbit on May 7, 2013. As it has been reported that the He contribution to Total Non-Ionizing Dose (TNID) may be comparable to that of H in representative space environments, a data analysis to identify periods of high He flux as compared to H, and conditions under which both ions must be accounted for during radiation effect analyses, was performed. From the study of the positional variation of solar H and He fluxes, a formulation of the minimum L-value reached by these particles for a given rigidity is provided. The shape of solar H and He energy spectra as well as the H/He fluence ratio and pitch angle distributions are characterized. The contribution of He compared to H for Total Ionizing Dose (TID) and TNID effects is below 5% for devices shielded by >2mm AI. more...
 
-----------------------

"An Area Efficient Stacked Latch Design Tolerant to SEU in 28 nm FDSOI Technology"

by H.-B. Wang, L. Chen, R. Liu, Y.-Q. Li, J. S. Kauppila, B. L. Bhuva, K. Lilja, S.-J. Wen, R. Wong, R. Fung, and S. Baeg


In this paper, we present D flip-flop, Quatro, and stacked Quarto flip-flop designs fabricated in a commercial 28-nm CMOS FDSOI technology. Stacked-transistor structures are introduced in the stacked Quatro design to protect the sensitive devices of the original structure. Striking either of the stacked devices will not upset the latch because the conduction path to the supply rail is still cut off by the other off-state device. The irradiation experimental results substantiate that the stacked Quatro design has significantly better SEU tolerance (e.g., higher heavy ion upset Linear Energy Transfer threshold and smaller cross-section data) than the reference designs. It introduces power and area penalties because the proposed design duplicates and stacks two sensitive PMOS devices. Additionally, the impact of technology scaling on Quatro in various technology nodes (130-nm, 65-nm, and 40-nm) has been studied suggesting decreasing upset threshold and decreasing cross-section data. more...
 
-----------------------
 

A PUBLICATION OF THE IEEE NUCLEAR AND PLASMA SCIENCES SOCIETY

DECEMBER 2016   |  VOLUME 63  |  NUMBER 6  |  IETNAE  |  (SSN 0018-9499)

REGULAR PAPERS
Unbiased Filtered Back-Projection in 4π Compton Imaging With 3D Position Sensitive Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Chu, M. Streicher, J. A. Fessler, and Z. He
Design of Ultra-Low Noise and Low Temperature Usable Power System for High-Precision Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H.-F. Zhang, J.-M. Wang, Q.-J. Tang, Y. Feng, D.-X. Yang, J. Chen, S.-Z. Lin, and J. Wang
Discrimination of Neutron-Gamma Ray Pulses With Pileup Using Normalized Cross Correlation and Principal Component
     Analysis
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Dutta and K. E. Holbert
Photomultipliers With the Screening Grid at the Anode for TOF PET Block Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Moszynski, T. Szcześniak, M. Grodzicka, R. Leclercq, A. West, and M. Kapusta
Optimum Energy Compensation for Current Mode Application of Silicon PIN Diode in Gamma Radiation Detection . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. Mitra, S. Srivastava, S. K. Singh, D. K. Akar, H. K. Patni, A. Topkar, and A. Vinod Kumar
A Low-Noise Germanium Ionization Spectrometer for Low-Background Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. E. Aalseth,
     J. Colaresi,   J. I. Collar,   J. E. Fast,   T. W. Hossbach,   J. L. Orrell,   C. T. Overman,   B. Scholz,   B. A. Vandevender     and    K. M. Yocum

Semi-Tomographic Gamma Scanning Technique for Non-Destructive Assay of Radioactive Waste Drums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. Gu, K. Rao, D. Wang, and J. Xiong
Monitoring of Dose Distribution in Photon Therapy With Multiple-Scattering Compton Camera: A Monte Carlo Simulation Study . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Lee, H. Lee, and W. Lee
A Novel In-Beam Delayed Neutron Counting Technique for Characterization of Special Nuclear Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Bentoumi, R. B. Rogge, M. T. Andrews, E. C. Corcoran, I. Dimayuga, D. G. Kelly, L. Li, and B. Sur
Modeling Changes in Measured Conductance of Thin Boron Carbide Semiconducting Films Under Irradiation . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. G. Peterson, Y. Wang, N. J. Ianno, and M. Nastasi
Measurement of High-Energy Neutron Flux Above Ground Utilizing a Spallation Based Multiplicity Technique . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Roecker, A. Bernstein, P. Marleau, and K. Vetter
The Influence of Light Anion Impurities Upon SrI2(Eu) Scintillator Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . S. E. Swider, S. Lam, and A. Datta
Tl2LiYCl6:Ce: A New Elpasolite Scintillator . . . . . . . . . . . . . . . . . . . . . R. Hawrami, E. Ariesanti, L. Soundara-Pandian, J. Glodo, and K. S. Shah
Development of ZnO Nanorod-Based Scintillators Grown Under a Low-Temperature Hydrothermal Method for Use in Alpha-Particle
     and Thermal Neutron Detectors
. . . . . . . . . . . . . . . . . . . . . . . . . . . S. V. Kurudirek, N. E. Hertel, B. D. B. Klein, M. Biber, and C. J. Summers
Quantitative Test of the Evolution of Geant4 Electron Backscattering Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Basaglia, M. C. Han, G. Hoff, C. H. Kim, S. H. Kim, M. G. Pia, and P. Saracco
Analysis of Spent Nuclear Fuel Imaging Using Multiple Coulomb Scattering of Cosmic Muons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Chatzidakis, C. K. Choi, and L. H. Tsoukalas
Delayed Gamma Measurements in Different Nuclear Research Reactors Bringing Out the Importance of Their Contribution in Gamma Flux
     Calculations
. . . . . . . . . . . D. Fourmentel, V. Radulović, L. Barbot, J-F. Villard, G. Žerovnik, L. Snoj, M. Tarchalski, K. Pytel,  and  F. Malouch
Energy Reconstruction in a High Granularity Semi-Digital Hadronic Calorimeter for ILC Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Mannai, K. Manai, E. Cortina, and I. Laktineh
Irradiation Campaign in the EOLE Critical Facility of Fiber Optic Bragg Gratings Dedicated to the Online Temperature Measurement
     in Zero Power Research Reactors
. . . . . . A. Morana, F. Mellier, G. Cheymol, C. Destouches, J. Di Salvo, S. Girard, G. Laffont, and E. Marin
Temporal and Dose Kinetics of Tunnel Relaxation of Non-Equilibrium Near-Interfacial Charged Defects in Insulators . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. I. Zebrev and M. G. Drosdetsky
Real-Time Phase Correction Based on FPGA in the Beam Position and Phase Measurement System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Gao, L. Zhao, J. Liu, Z. Jiang, X. Hu, S. Liu, and Q. An
Asynchronous Distributed Object Model Using Java for the Control System of a Synchrotron Radiation Source . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. Kanaya, S. Mori, A. Shikanai, S. Ootani, S. Suzuki, S. Sato, and S. Suzuki
Continuously Deforming 4D Voxel Phantom for Realistic Representation of Respiratory Motion in Monte Carlo Dose Calculation . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . M. C. Han, J. M. Seo, S. H. Lee, C. H. Kim, Y. S. Yeom, T. T. Nguyen, C. Choi, S. Kim, J. H. Jeong, and J. W. Sohn
Detection of Sensor Abnormalities in a Pressurizer by Means of Analytical Redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Cho and J. Jiang
A 65 nm Temporally Hardened Flip-Flop Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . Y.-Q. Li, H.-B. Wang, R. Liu, L. Chen, I. Nofal, Q.-Y. Chen, A.-L. He, G. Guo, S. H. Baeg, S.-J. Wen, R. Wong, Q. Wu, and M. Chen
Characterization of Solar Energetic H and He Spectra Measured by the Energetic Particle Telescope (EPT) On-Board PROBA-V During the
     January 2014 SEP Event
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Benck, S. Borisov, M. Cyamukungu, H. Evans, and P. J. Nieminen
Single Event Transients and Pulse Quenching Effects in Bandgap Reference Topologies for Space Applications . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. M. Andreou, A. Javanainen, A. Rominski, A. Virtanen, V. Liberali,
     C. Calligaro, A. V. Prokofiev, S. Gerardin, M. Bagatin, A. Paccagnella, D. M. González-Castaño,  F. Gómez,  D. Nahmad,  and  J. Georgiou

Heavy Ion Characterization of Temporal-, Dual- and Triple Redundant Flip-Flops Across a Wide Supply Voltage Range in a 65 nm
     Bulk CMOS Process
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Hasanbegović and S. Aunet
Radiation Hard Contactless Angular Position Sensor Based on Hall Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. Adamiec, J. Barbero, E. Cordero, P. Dainesi, and N. Steiner
Non-Linear Optical Phenomena in Detecting Materials as a Possibility for Fast Timing in Detectors of Ionizing Radiation . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. V. Korjik, E. Auffray, O. Buganov,
     A. A. Fedorov, I. Emelianchik, E. Griesmayer, V. Mechinsky, S. Nargelas, O. Sidletskiy, G. Tamulaitis, S. N. Tikhomirov, and A. Vaitkevičius

A Methodology for Characterization of SET Propagation in SRAM-Based FPGAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Liang, X. Xu, Z. Huang, C. Jiang, Y. Lu, A. Yan, T. Ni, Y. Ouyang, and M. Yi
Time-Dependent Electrical Resistance of Transmutational Material With 57Co . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. Yoshimizu
Long Term Effects of Charge Redistribution in Cycled Bias Operating MOS Dosimeter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Sambuco, Salomone, A. Holmes-Siedle, and A. Faigón
An Area Efficient Stacked Latch Design Tolerant to SEU in 28 nm FDSOI Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . H.-B. Wang, L. Chen, R. Liu, Y.-Q. Li, J. S. Kauppila, B. L. Bhuva, K. Lilja, S.-J. Wen, R. Wong, R. Fung, and S. Baeg


2016 INDEX




Accessibility | Privacy and Opting Out of Cookies | Nondiscrimination Policy

Copyright 2016 IEEE - All rights reserved. Use of this newsletter site signifies your agreement to the IEEE Terms and Conditions.
A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. [Response: Read Receipt]

If you would like to be removed from this email distribution, please [Response: Unsubscribe from List].
If you have unsubscribed in error, please [Response: Subscribe to List].
To unsubscribe from all mailings, use your IEEE Account to update your "Personal Profile and Communication Preferences."

Replies to this message will not reach IEEE. Due to local email service/provider settings, random characters may appear in some instances.

Although the IEEE is pleased to offer the privilege of membership to individuals and groups in the OFAC embargoed countries, the IEEE cannot offer certain services to members from such countries.

IEEE
445 Hoes Lane
Piscataway, NJ 08854 USA
+1 800 678 4333 (toll free, US & Canada)
+1 732 981 0060 (Worldwide)

For more information or questions regarding your IEEE Membership or IEEE Account, please direct your inquiries to the IEEE Contact Center.