T-PS Header
T-NS Home  |   Editorial Board  |   T-NS in IEEE Xplore  |    Early Access  |   Manuscript Submission
FEATURED STORIES - AUGUST 2016

"Trigger Efficiency of a ZnS:6LiF Scintillation Neutron Detector Readout With a SiPM"

by Alexey Stoykov, Jean-Baptiste Mosset, and Malte Hildebrandt


The efficiency of detecting signals from neutron absorption events (trigger efficiency) in detectors using ZnS scintillators loaded with neutron absorbers (6Li, 10B) is prone to be limited to values well below 100%: the non-transparency of the scintillator results in a wide dynamic range of the detected signals with some fraction always falling under the detection threshold set to satisfy the requirements on the gamma sensitivity, multi-count ratio, and the background count rate of the detector. The question of the limited trigger efficiency of such detectors is very seldom discussed in publications, yet it is very important as the product of the trigger efficiency and the probability of neutron absorption in the detector defines its overall efficiency. more...
 
-----------------------

"A 2D Proof of Principle Towards a 3D Digital SiPM in HV CMOS With Low Output Capacitance"

by Frédéric Nolet, Vincent-Philippe Rhéaume, Samuel Parent, Serge A. Charlebois, Réjean Fontaine, Jean-François Pratte


The 3D vertical integration of SPAD and readout electronics is a promising avenue to high performance photodetectors. This approach will minimize most limitations of current SiPM and lead to better performances in terms of effective PDE, timing and added functionalities. In this paper, we present a new integrated digital SiPM electronic architecture. This specific architecture aims to replace conventional analog SiPM with the added benefits of a significantly lower and constant output capacitance as well as immunity to SPAD to SPAD gain variation on the single photon resolution while providing an analog-like output signal waveform representing the sum of all triggered SPADs. more...
 
-----------------------

"CHARM: A Mixed Field Facility at CERN for Radiation Tests in Ground, Atmospheric, Space and Accelerator Representative Environments"

by J. Mekki, M. Brugger, R. G. Alia, A. Thornton, N. C. Dos Santos Mota, and S. Danzeca


Depending on the application, electronic systems and devices can be subjected to different radiation environments. According to the type of radiation encountered during operation, electronic components are simultaneously vulnerable to cumulative and single event effects. In addition, inelastic interactions of highly energetic particles with high-Z materials generate highly ionizing products. This can lead to catastrophic failures and therefore can have a significant impact on the reliability of electronic devices. For this reason, it is necessary to test electronic devices/systems in representative environments. For this purpose, a mixed field radiation test facility called CHARM has been established at CERN. Its radiation environment is not only representative of particle accelerators, but also of atmospheric, ground level and space applications. more...
 
-----------------------

"A Soft-Error Mitigated Microprocessor With Software Controlled Error Reporting and Recovery"

by Chad Farnsworth, Lawrence T. Clark, Anudeep R. Gogulamudi, Vinay Vashishtha, and Aditya Gujja


A MIPS 4Kc compliant embedded microprocessor design that incorporates architectural features for software controlled soft-error recovery is presented. The design leverages classical fault tolerance techniques, e.g., error detection and instruction restart, implemented at the micro-architectural level, and added instructions for error recovery. Soft-errors are detected as the instructions commit to architectural state. At this point, an exception is taken and software recovers the correct machine state and restarts execution. The software recovery allows full machine inspection to determine error root causes. Added instructions also facilitate silicon validation of the hardware and software recovery mechanisms. more...
 
-----------------------

"New Insight Into Heavy Ion Induced SEGR: Impact of Charge Yield"

by Vladimir V. Emeliyanov, Alexander S. Vatuev, and Rustem G. Useinov


In this work an experimental evidence of a crucial role of the charge yield in the heavy ion induced single-event gate rupture (SEGR) process in SiO2 is reported. The results of SEGR cross-sections and charge yield measurements are presented for different heavy ions with atomic number Z from 26 to 83. The dependence of breakdown voltage on deposited energy was derived taking statistical variations in the heavy ion deposited energy into account. It is shown that the SEGR breakdown voltage is a linear function of residual charge remaining after recombination in ion track. more...
 
-----------------------
 

A PUBLICATION OF THE IEEE NUCLEAR AND PLASMA SCIENCES SOCIETY

AUGUST 2016   |  VOLUME 63  |  NUMBER 4  |  IETNAE  |  (SSN 0018-9499)
SELECTED PAPERS FROM THE 2015 CONFERENCE ON RADIATION AND ITS EFFECTS ON
COMPONENTS AND SYSTEMS (RADECS), Moscow, Russia, September 14-18, 2015

EDITORIAL
Comments by the Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Fleetwood, D. Brown, S. Girard, S. Gerardin, H. Quinn, H. Barnaby, D. Kobayashi, and I. S. Esqueda
List of Reviewers

CAMERA DESIGN AND IMAGING PERFORMANCE
Measurement and Analysis of Multiple Output Transient Propagation in BJT Analog Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. J-H. Roche, A. Khachatrian, J. H. Warner, S. P. Buchner, D. McMorrow, and D. A. Clymer
Spatial Mapping of Pristine and Irradiated AlGaN/GaN HEMTs With UV Single-Photon Absorption Single-Event Transient
     Technique
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . A. Khachatrian, N. J-H. Roche, S. P. Buchner, A. D. Koehler, J. D. Greenlee, T. J. Anderson, J. H. Warner, and D. McMorrow
Analysis of Soft Error Rates in 65- and 28-nm FD-SOI Processes Depending on BOX Region Thickness and Body Bias by
     Monte-Carlo Based Simulations
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Zhang, S. Umehara, J. Yamaguchi, J. Furuta, and K. Kobayashi
Heavy-Ion Radiation Impact on a 4 Mb FRAM Under Different Test Modes and Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . V. Gupta, A. Bosser, G. Tsiligiannis, A. Zadeh, A. Javanainen, A. Virtanen, H. Puchner, F. Saigné, F. Wrobel, and L. Dilillo
Physical TCAD Model for Proton Radiation Effects in SiGe HBTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. O. Petrosyants and M. V. Kozhukhov
Radiation Tolerance of Programmable Voltage Supply and High Galvanic Insulation Readout Electronics Used by CERN's LHC
     Cryogenics
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Casas-Cubillos, N. Trikoupis, and J. Mekki
Multiscale Modeling of Accumulation of Radiation Defects in Silicon Detectors Under Alpha Particle Irradiation . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Yu. Romashka, A. V. Yanilkin, A. I. Titov, D. V. Gusin, A. V. Sidelev, and D. Yu. Mokeev
Optical Frequency Domain Reflectometer Distributed Sensing Using Microstructured Pure Silica Optical Fibers Under Radiations . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Rizzolo, A. Boukenter, T. Allanche,
      . . . . . . . J. Périsse, G. Bouwmans, H. El Hamzaoui, L. Bigot, Y. Ouerdane, M. Cannas, M. Bouazaoui, J.-R. Macé, S. Bauer, and S. Girard
Dose Rate Effect Comparison on the Radiation Response of Type I Fiber Bragg Gratings Written With UV cw Laser . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Morana, E. Marin, S. Girard, C. Marcandella, P. Paillet, A. Boukenter, and Y. Ouerdane
On-Line Characterization of Gamma Radiation Effects on Single-Ended Raman Based Distributed Fiber Optic Sensor . . . . . . . . C. Cangialosi,
     . . . . . . . . . . . . . S. Girard, M. Cannas, A. Boukenter, E. Marin, S. Agnello, S. Delepine-Lesoille, C. Marcandella, P. Paillet, and Y. Ouerdane
Radiation Response of Ce-Codoped Germanosilicate and Phosphosilicate Optical Fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . D. Di Francesca, S. Girard, S. Agnello, A. Alessi, C. Marcandella, P. Paillet, N. Richard, A. Boukenter, Y. Ouerdane, and F. M. Gelardi
Dose Rate Switching Technique on ELDRS-Free Bipolar Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Boch, A. Michez,
     . . . . . . . . . . . . . . M. Rousselet, S. Dhombres, A. D. Touboul, J.-R. Vaillé, L. Dusseau, E. Lorfèvre, N. Chatry, N. Sukhaseum, and F. Saigné
Single Events in a COTS Soft-Error Free SRAM at Low Bias Voltage Induced by 15-MeV Neutrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . J. A. Clemente, F. J. Franco, F. Villa, M. Baylac, P. Ramos, V. Vargas, H. Mecha, J. A. Agapito, and R. Velazco
A Radiation-Hardened Non-Redundant Flip-Flop, Stacked Leveling Critical Charge Flip-Flop in a 65 nm Thin BOX FD-SOI Process . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Furuta, J. Yamaguchi, and Kazutoshi Kobayashi
Statistical Anomalies of Bitflips in SRAMs to Discriminate SBUs From MCUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . J. A. Clemente, F. J. Franco, F. Villa, M. Baylac, S. Rey, H. Mecha, J. A. Agapito, H. Puchner, G. Hubert, and R. Velazco
Total Ionizing Dose Effects in Hydrogen Sensors Based on MISFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. I. Podlepetsky
CHARM: A Mixed Field Facility at CERN for Radiation Tests in Ground, Atmospheric, Space and Accelerator Representative . . . . . . . . . . . . . .
     Environments
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Mekki, M. Brugger, R. G. Alia, A. Thornton, N. C. Dos Santos Mota, and S. Danzeca
Proton-Induced Single-Event Degradation in SDRAMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . A. Rodriguez, F. Wrobel, A. Samaras, F. Bezerra, B. Vandevelde, R. Ecoffet, A. Touboul, N. Chatry, L. Dilillo, and F. Saigné
Methodologies for the Statistical Analysis of Memory Response to Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. L. Bosser, V. Gupta,
      . . . . . . . . . . . G. Tsiligiannis, C. D. Frost, A. Zadeh, J. Jaatinen, A. Javanainen, H. Puchner, F. Saigné, A. Virtanen, F. Wrobel, and L. Dilillo
Combine Flash-Based FPGA TID and Long-Term Retention Reliabilities Through VT Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . J.-J. Wang, N. Rezzak, D. Dsilva, F. Xue, S. Samiee, P. Singaraju, J. Jia, V. Nguyen, F. Hawley, and E. Hamdy
Flexible Ag-ChG Radiation Sensors: Limit of Detection and Dynamic Range Optimization Through Physical Design Tuning . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Mahmud, Y. Gonzalez-Velo, M. Saremi, H. J. Barnaby,
      . . . . . . . . . . . M. N. Kozicki, K. E. Holbert, M. Mitkova, T. L. Alford, M. Goryll, W. Yu, D. Mahalanabis, W. Chen, N. Chamele, and J. Taggart
Radiation Hardening by Process of CBRAM Resistance Switching Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . .Y. Gonzalez-Velo, A. Mahmud, W. Chen, J. L. Taggart, H. J. Barnaby, M. N. Kozicki, M. Ailavajhala, K. E. Holbert, and M. Mitkova
ISNP/GNEIS Facility in Gatchina for Neutron Testing With Atmospheric-Like Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . O. A. Shcherbakov, A. S. Vorobyev, A. M. Gagarski, L. A. Vaishnene, E. M. Ivanov, V. S. Anashin, L. R. Bakirov, and A. E. Koziukov
Impact of the Border Crossing Effects on the DCNU for Pixel Arrays Irradiated With High Energy Protons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. C. Ursule, C. Inguimbert, and T. Nuns
Embedded Detection and Correction of SEU Bursts in SRAM Memories Used as Radiation Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. Secondo, G. Foucard, S. Danzeca, R. Losito, P. Peronnard, A. Masi, M. Brugger, and L. Dusseau
New Insight Into Heavy Ion Induced SEGR: Impact of Charge Yield . . . . . . . . . . . . . . . . . . . V. V. Emeliyanov, A. S. Vatuev, and R. G. Useinov
Dark Current Spectroscopy on Alpha Irradiated Pinned Photodiode CMOS Image Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J.-M. Belloir, V. Goiffon, C. Virmontois, P. Paillet, M. Raine, P. Magnan, and O. Gilard
Evaluating the SEE Sensitivity of a 45 nm SOI Multi-Core Processor Due to 14 MeV Neutrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . P. Ramos, V. Vargas, M. Baylac, F. Villa, S. Rey, J. A. Clemente, N.-E. Zergainoh, J.-F. Méhaut, and R. Velazco
Predictions of Proton Cross-Section and Sensitive Thickness for Analog Single-Event Transients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Weulersse, S. Morand, F. Miller, T. Carrière, and R. Mangeret
Reliability on ARM Processors Against Soft Errors Through SIHFT Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E. Chielle, F. Rosa, G. S. Rodrigues, L. A. Tambara, J. Tonfat,
     . . . . . E. Macchione, F. Aguirre, N. Added, N. Medina, V. Aguiar, M. A. G. Silveira, L. Ost, R. Reis, S. Cuenca-Asensi, and F. L. Kastensmidt
Analyzing the Impact of Radiation-Induced Failures in Programmable SoCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. A. Tambara, P. Rech, E. Chielle, J. Tonfat, and F. L. Kastensmidt
Reliability Analysis of Operating Systems and Software Stack for Embedded Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Santini, L. Carro, F. Rech Wagner, and P. Rech
Partial TMR in FPGAs Using Approximate Logic Circuits . . . . . . . . . . . . . . . . . . . A. J. Sánchez-Clemente, L. Entrena, and M. García-Valderas
A Soft-Error Mitigated Microprocessor With Software Controlled Error Reporting and Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
    
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Farnsworth, L. T. Clark, A. R. Gogulamudi, V. Vashishtha, and A. Gujja
Semi-Empirical Method for Estimation of Single-Event Upset Cross Section for SRAM DICE Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. S. Gorbunov, A. B. Boruzdina, and P. S. Dolotov


Conference Author Index


 

PART II OF TWO PARTS


REGULAR PAPERS
Optically Stimulated Luminescence Analysis Method for High Dose Rate Using an Optical Fiber Type Dosimeter . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Ueno, K. Tominaga, T. Tadokoro, K. Ishizawa, Y. Takahashi, and H. Kuwabara
Trigger Efficiency of a ZnS:6LiF Scintillation Neutron Detector Readout With a SiPM . . . . . . . . . . . . A. Stoykov, J.-B. Mosset, and M. Hildebrandt
The Effect of Low-Temperature Annealing on a CdZnTe Detecto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. H. Kim, S. Hwang, P. Fochuk, L. Nasi, A. Zappettini, A. E. Bolotnikov, and R. B. James
Measurement of Neutron Energy Distributions From p+Be Reaction at 20 MeV Using Threshold Activation Foils . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . V. Suman, S. P. Tripathy, C. Sunil, A. A. Shanbhag, S. Paul, G. S. Sahoo, T. Bandyopadhyay, and P. K. Sarkar
A 2D Proof of Principle Towards a 3D Digital SiPM in HV CMOS With Low Output Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F. Nolet, V.-P. Rhéaume, S. Parent, S. A. Charlebois, R. Fontaine, and J.-F. Pratte
Design and Performance of the BCM1F Front End ASIC for the Beam Condition Monitoring System at the CMS Experiment . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Przyborowski, J. Kaplon, and P. Rymaszewski
Ultra-Fast Sampling and Data Acquisition Using the DRS4 Waveform Digitizer . . . . . . . . . . . . . . . . . . . . . M. Bitossi, R. Paoletti, and D. Tescaro
Compaction in Optical Fibres and Fibre Bragg Gratings Under Nuclear Reactor High Neutron and Gamma Fluence . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Remy, G. Cheymol, A. Gusarov, A. Morana, E. Marin, and S. Girard
Study of the Influence of Heat Sources on the Out-of-Pile Calibration Curve of Calorimetric Cells Used for Nuclear Energy Deposition
     Quantification
. . . . . . . . . . . . C. De Vita, J. Brun, C. Reynard-Carette, M. Carette, H. Amharrak, A. Lyoussi, D. Fourmentel, and J.-F. Villard
Determination of Bandwidths of PWR-UO2 Spent Fuel Radionuclide Inventory Based on Real Operational History Data . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. Fast, Y. Aksyutina, H. Tietze-Jaensch, and D. Bosbach
Design and Construction of Large Size Micromegas Chambers for the ATLAS Upgrade of the Muon Spectrometer . . . . . . . . . . . . . F. Jeanneau
Decentralized Fuzzy MPC on Spatial Power Control of a Large PHWR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Liu, D. Jiang, and K. Y. Lee
Predictive Trip Detection for Nuclear Power Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. J. Rankin and J. Jiang
A Quantitative Analysis of DICE SRAM SEU Caused by Heavy Ion Elastic Scattering . . . . . . . . M. Zhu, H. Zhu, W. Zhang, Q. Yu, and M. Tang
Ionizing Energy Depositions After Fast Neutron Interactions in Silicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Bergmann, S. Pospisil, I. Caicedo, J. Kierstead, H. Takai, and E. Frojdh
CMOS Rad-Hard Front-End Electronics for Precise Sensors Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Sordo-Ibáññez, B. Piñero-García, M. Muñoz-Díaz, A. Ragel-Morales, J. Ceballos-Cáceres,
     . . . . . . . . . . . . . . L. Carranza-González, S. Espejo-Meana, A. Arias-Drake, J. Ramos-Martos, J. M. Mora-Gutiérrez, and M. A. Lagos-Florido
Influence of Alternate Biasing on TID Effects of Irradiated Mixed-Signal Programmable Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. R. Balen, R. G. Vaz, G. S. Fernandes, and O. L. Gonçalez
Studying the Variation Effects of Radiation Hardened Quatro SRAM Bit-Cell . . . . . . . . . . . . L. D. Trang Dang, M. Kang, J. Kim, and I.-J. Chang
Single-Event Transient Characterization of a Radiation-Tolerant Charge-Pump Phase-Locked Loop Fabricated in 130 nm PD-SOI
     Technology
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Chen, M. Lin, Y. Zheng, Z. Wei, S. Huang, and S. Zou
Proton Recoil Telescope Based on Diamond Detectors for the Measurement of Fusion Neutrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Caiffi, M. Osipenko, M. Ripani, M. Pillon, and M. Taiuti


Accessibility | Privacy and Opting Out of Cookies | Nondiscrimination Policy

Copyright 2016 IEEE - All rights reserved. Use of this newsletter site signifies your agreement to the IEEE Terms and Conditions.
A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. [Response: Read Receipt]

If you would like to be removed from this email distribution, please [Response: Unsubscribe from List].
If you have unsubscribed in error, please [Response: Subscribe to List].
To unsubscribe from all mailings, use your IEEE Account to update your "Personal Profile and Communication Preferences."

Replies to this message will not reach IEEE. Due to local email service/provider settings, random characters may appear in some instances.

Although the IEEE is pleased to offer the privilege of membership to individuals and groups in the OFAC embargoed countries, the IEEE cannot offer certain services to members from such countries.

IEEE
445 Hoes Lane
Piscataway, NJ 08854 USA
+1 800 678 4333 (toll free, US & Canada)
+1 732 981 0060 (Worldwide)

For more information or questions regarding your IEEE Membership or IEEE Account, please direct your inquiries to the IEEE Contact Center.