T-PS Header
T-NS Home  |  Editorial Board  |  T-NS in IEEE Xplore  |   Early Access  |  Manuscript Submission
FEATURED STORIES - APRIL 2016

The Stable Ce4+ Center: A New Tool to Optimize Ce-doped Oxide Scintillators

by Martin Nikl, Vladimir Babin, Jan Pejchal, Valentin V. Laguta, Maksym Buryi, Jiri A. Mares, Kei Kamada, Shunsuke Kurosawa, Akira Yoshikawa, Dalibor Panek, Tomas Parkman, Petr Bruza, Klaus Mann, and Matthias Müller


The role and effect of stable centers in Ce4+ Ce-doped LuAG single crystal scintillator is further studied by means of measurements of several optical, luminescence and scintillation characteristics. Two LuAG:Ce single crystal samples are compared: in one of them the dominating Ce4+ center is stabilized by high concentration Mg2+codoping while the other one shows only the presence of stable center. Tailored (Eu, Mg) doped LuAG single crystal is also prepared to test the presence and thermal stability of hole traps in the host which affect the timing characteristics of Ce4+ scintillation cycle, namely its restoration back to 4+ charge state in last step of the cycle. EPR experiment was also employed at Mg- and (Eu, Mg) doped LuAG samples and the signature of the O--hole center stabilized by Mg2+ ion was clearly obtained. more...

-----------------------
This April edition contains a special issue celebrating 50 years of the first IEEE Particle Accelerator Conference. This excellent suite of papers is a useful archival record of the technological advances of this community. Below are two papers illustrating the applications of accelerators which provide significant beneficial societal impact.

Featured Stories two and three below represent applications to the medical field and highlight advances in accelerators for radiation therapy both in humans and in animals. The veterinary oncology paper also highlights the strong research component benefitting both veterinary and human medicine.
-----------------------

"Developments in Accelerators Used for Particle Therapy"

by J. M. Schippers


After the invention of the cyclotron by Ernest Lawrence and Robert Wilson's suggestion to use the Bragg peak in the depth-dose distribution of protons to apply a high radiation dose selectively into a tumor, the first patient was treated with energetic ions at the Bevatron in Berkeley in 1950. Since then cyclotrons and synchrotrons have been used to accelerate protons and ions for particle therapy. In the first 50 years of particle therapy many treatment facilities were located at laboratory based accelerators, but since 2000 the number of clinical facilities in a hospital based environment is increasing. An overview of developments in and related to the accelerators typically used in this medical application will be presented. This paper will concentrate on developments in cyclotrons and synchrotrons, since these two accelerator types are and are likely to remain the major accelerator types used for therapy in the coming years.more...

-----------------------

"The Impact of a Clinical Electron Accelerator on the Advancement of Veterinary Oncology and Translational Cancer Research "

by Susan M. LaRue and Thomas B. Borak


Cancer is a leading cause of death in veterinary patients. Forms of radiation therapy were used to treat these patients as early as 1896. Dr. Edward Gillette spearheaded veterinary oncology at Colorado State University (CSU). He recognized that a successful program would require well trained personnel together with modern modalities. His motivation presented a dilemma since fiscal realities in veterinary practice are modest compared to clinical practices in humans. In 1981 the CSU College of Veterinary Medicine and Biomedical Sciences commissioned the first clinical linear accelerator dedicated to the treatment of naturally occurring tumors in veterinary patients and translational research. This refurbished Varian Clinac 6 was capable of delivering photon and electron beams generated in an isocentric gantry with flexible beam collimation. Commercially available clinical accelerators are designed exclusively for human medicine. This paper chronicles the adaption of this early electron accelerator to veterinary patients without compromising the accuracy and precision expected in human radiation therapy. Broad challenges were encountered in dosimetry, treatment planning and patient positioning. more...

-----------------------

A PUBLICATION OF THE IEEE NUCLEAR AND PLASMA SCIENCES SOCIETY

APRIL 2016   |  VOLUME 63  |  NUMBER 2  |  IETNAE  |  (SSN 0018-9499)
13TH INTERNATIONAL CONFERENCE ON INORGANIC SCINTILLATORS AND THEIR APPLICATIONS
(SCINT 2015) Berkeley, CA, USA, June 7–12, 2015

EDITORIAL
Conference Comments by the Editors . . . . . . . . . P. Dorenbos, E. Auffray, N. Cherepy, M. Fasoli, J. Glodo, H. Kim, C. L. Melcher, and S. Payne


The Stable Ce4+ Center: A New Tool to Optimize Ce-doped Oxide Scintillators . . . . . . . . . . . . . . . . . . M. Nikl, V. Babin, J. Pejchal, V. V. Laguta,
      . . . . . . . . . . . . . . . . . . . . . . . . . . M. Buryi, J. A. Mares, K. Kamada, S. Kurosawa, A. Yoshikawa, D. Panek, P. Bruza, K. Mann, and M. Müller
Tl2LiYCl6 (Ce3+): New Tl-based Elpasolite Scintillation Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. J. Kim, G. Rooh, H. Park, and S. Kim
Large Size Czochralski Growth and Scintillation Properties of Mg2+ Co-doped Ce:Gd3Ga3Al2O12 . . . . . K. Kamada, Y. Shoji, V. V. Kochurikhin,
     . . . A. Nagura, S. Okumura, S. Yamamoto, J. Y. Yeom, S. Kurosawa, J. Pejchal, Y. Yokota, Y. Ohashi, M. Nikl, M. Yoshino, and A. Yoshikawa
Scintillation Characterizations of Tin Doped Lithium Iodide Crystals at Room and Low Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Khan, H. J. Kim, Y. D. Kim, and M. H. Lee
Growth and Luminescence Properties of Eu:SrI2 Single Crystals Prepared by Modified Micro-Pulling-Down Method . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. Král, V. Jarý, J. Pejchal, S. Kurosawa, K. Nitsch, Y. Yokota,M. Nikl, and A. Yoshikawa
Energy Resolution and Slow Components in Undoped CsI Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Moszyński, A. Syntfeld-Każuch,
      . . . . . . . . . . . . . . . . . . . L. Swiderski, P. Sibczyński, M. Grodzicka, T. Szczȩśniak, A. V. Gektin, P. Schotanus, N. Shiran, and R. T. Williams
Growth of 1.5 inch Eu:SrI2 Single Crystal and Scintillation Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Yokota, T. Ito, S. Yasuhiro, S. Kurosawa, Y. Ohashi, K. Kamada, and A. Yoshikawa
Fabrication and X-Ray Excited Luminescence of Ga- and In-Doped ZnO Nanorods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Q. Li, X. Liu, M. Gu, S. Huang, C. Ni, B. Liu, Y. Hu, S. Sun, and Z. Zhang
Measurement of LYSO Intrinsic Light Yield Using Electron Excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . R. Martinez Turtos, S. Gundacker, M. Pizzichemi, A. Ghezzi, K. Pauwels, E. Auffray, P. Lecoq, and M. Paganoni
Effects of Air Annealing on Luminescent Properties of Cerium-doped Lutetium Oxyorthosilicate Scintillation Ceramics . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Fan, D. Lin, Y. Shi, J. Zhang, J. Xie, F. Lei, and L. Zhang
Single Crystal Growth of Cerium and Praseodymium Doped YCa4O(BO3)3 Scintillator by Micro-Pulling Down Method . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Kamada, S. Kurosawa, Y. Yokota, J. Pejchal, Y. Ohashi, M. Yoshino, and A. Yoshikawa
Lithium Alkaline Halides—Next Generation of Dual Mode Scintillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Soundara-Pandian, R. Hawrami, J. Glodo, E. Ariesanti, E. V. van Loef, and K. Shah
Scintillating Screens Based on the Single Crystalline Films of Multicomponent Garnets: New Achievements and Possibilities . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Y. Zorenko, V. Gorbenko, T. Zorenko, K. Paprocki, M. Nikl, J. A. Mares,
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. Bilski, A. Twardak, O. Sidletskiy, I. Gerasymov, B. Grinyov, and A. Fedorov
Energy Resolution and Temperature Dependence of Ce:GAGG Coupled to 3 mm × 3 mm Silicon Photomultipliers . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Seitz, N. Campos Rivera, and A. G. Stewart
Cs2LiLa(Br, Cl)6 Crystals for Nuclear Security Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. Hawrami, L. Soundara Pandian, E. Ariesanti, J. Glodo, J. Finkelstein, J. Tower, and K. Shah
An APD for the Detection of the Fast Scintillation Component of BaF2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Hitlin, J. H. Kim, J. Trevor, J. Hennessy, M. Hoenk, A. Jewell, R. Farrell, and M. McClish
A Noise Spectroscopy Detector Array for Non-Intrusive Cargo Inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Kwong and W. G. J. Langeveld
Features of Different Inorganic Scintillators Used in Neutron-Radiation Systems for Illegal Substance Detection . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. F. Batyaev, S. G. Belichenko, and R. R. Bestaev
Review of Direct Searches for Dark Matter and the Role of Inorganic Scintillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. C. F. Di Stefano
Pulse Shape Discrimination of Nuclear Recoil and Electron Recoil Events With a NaI(Tl) Crystal for Dark Matter Search . . . . . . . . K. W. Kim,
      . . . . . . . . . . . . . . . . . . . . . . . . . G. Adhikari, P. Adhikari, S. Choi, C. Ha, I. S. Hahn, E. J. Jeon, H. W. Joo, W. G. Kang, H. J. Kim, N. Y. Kim,
      . . . . . . . . . . . . . . . . . . . . . S. K. Kim, Y. D. Kim, Y. H. Kim, H. S. Lee, M. H. Lee, D. S. Leonard, S. Y. Oh, S. L. Olsen, H. K. Park, H. S. Park,
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. S. Park, J. H. Shim, J. H. So, and Y. S. Yoon
Heat and Light Measurement of a 40Ca100MoO4 Crystal for the AMoRE Double Beta Decay Experiment . . . . . . .G. B. Kim, J. H. Choi, H. S. Jo,
      . . . . . . . . C. S. Kang, H. J. Kim, H. L. Kim, I. W. Kim, S. R. Kim, Y. D. Kim, Y. H. Kim, H. J. Lee, J. H. Lee, M. K. Lee, E. Sala, and J. H. So
A Study of Radioactive Contamination of 40Ca100MoO4 Crystals for the AMoRE Experiment . . . . . . . . . . . . . . . . . . . J. Y. Lee, V. Alenkov, L. Ali,
      . . . . . . J. Beyer, R. Bibi, R. S. Boiko, K. Boonin, O. Buzanov, N. Chanthima, M. K. Cheoun, D. M. Chernyak, J. Choi, S. Choi, F. A. Danevich,
      . . . . . . . . . . . M. Djamal, D. Drung, C. Enss, A. Fleischmann, A. Gangapshev, L. Gastaldo, Y. Gavriljuk, A. Gezhaev, V. Gurentsov, I. S. Hahn,
      . . . . . . . . . . . . E. J. Jeon, H. S. Jo, H. Joo, J. Kaewkhao, C. S. Kang, S. J. Kang, W. G. Kang, S. Karki, V. Kazalov, S. Khan, N. Khanbekov,
      . . . . . G. B. Kim, H. J. Kim, H. L. Kim, H. O. Kim, I. Kim, J. H. Kim, K. Kim, S. K. Kim, S. R. Kim, S. Y. Kim, Y. D. Kim, Y. H. Kim, K. Kirdsiri,
      . . . . . . . . . . Y. J. Ko, V. V. Kobychev, V. Kornoukhov, V. Kuzminov, H. J. Lee, H. S. Lee, J. H. Lee, J. M. Lee, K. B. Lee, M. H. Lee, M. K. Lee,
      . . . . . . . . . . . D. S. Leonard, J. Li, J. Li, Y. J. Li, P. Limkitjaroenporn, K. J. Ma, O. Mineev, V. M. Mokina, S. Olsen, S. Panasenko, I. Pandey,
      . . . . . . . . . H. K. Park, H. S. Park, K. S. Park, D. V. Poda, O. G. Polischuk, P. Polozov, H. Prihtiadi, S. Ratkevich, S. J. Ra, G. Rooh, J. H. So,
      . . . N. Srisittipokakun, J. Tekueva, V. I. Tretyak, A. Veresnikova, R. Wirawan, S. Yakimenko, N. Yershov, W. S. Yoon, Y. S. Yoon, and Q. Yue
Performance of the BGO Detector Element of the DAMPE Calorimeter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Wei, Z. Zhang, Y. Zhang, C. Wang,
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Wen, J. Dong, Z. Li, X. Wang, Z. Xu, G. Huang, and S. Liu

Limits of Inorganic Scintillating Materials to Operate in a High Dose Rate Environment at Future Collider Experiments . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Korjik and E. Auffray
Influence of the Light Collection Non-Uniformity in Strongly Tapered Lead Tungstate Crystals on the Energy Resolution of the PANDA
      Electromagnetic Calorimeter at Energies below 1 GeV
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Diehl, D. Bremer, P. Drexler, V. Dormenev,
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Eissner, T. Kuske, S. Nazarenko, R. W. Novotny, C. Rosenbaum, H.-G. Zaunick

New Start of Lead Tungstate Crystal Production for High-Energy Physics Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Borisevich, V. Dormenev, J. Houzvicka, M. Korjik, and R. W. Novotny
Space-Time Development of Electromagnetic and Hadronic Showers and Perspectives for Novel Calorimetric Techniques . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Benaglia, E. Auffray, P. Lecoq, H. Wenzel, and A. Para
Longevity of the CMS ECAL and Scintillator-Based Options for Electromagnetic Calorimetry at HL-LHC . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Li
Radiation Tolerance of LuAG:Ce and YAG:Ce Crystals under High Levels of Gamma- and Proton-Irradiation . . . . . . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. T. Lucchini, K. Pauwels, K. Blazek, S. Ochesanu and E. Auffrayg
Precision Timing Calorimeter for High Energy Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . D. Anderson, A. Apresyan, A. Bornheim, J. Duarte, C. Peña, A. Ronzhin, M. Spiropulu, J. Trevor, and S. Xie
Characterization of a 5 × 5 LYSO Matrix Calorimeter Prototype . . . . . . . . . . . . . N. Atanov, V. Baranov, F. Colao, M. Cordelli, G. Corradi, E. Dané,
      . . . . . . . . . . . . . . . . . . Yu. I. Davydov, K. Flood, S. Giovannella, V. Glagolev, F. Happacher, D. G. Hitlin, M. Martini, S. Miscettti, T. Miyashita,
      . . . . . . . . . . . . . . . . . . . . . . L. Morescalchi, P. Ott, G. Pezzullo, A. Saputi, I. Sarra, S. R. Soleti, G. Tassielli, V. Tereshchenko, and A. Thomas

Monitoring LSO/LYSO Crystal Calorimeters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F. Yang, L. Zhang, and R.-Y. Zhu
Gamma-Ray Induced Radiation Damage up to 340 Mrad in Various Scintillation Crystals . . . . . . . . . . . . . . . . . F. Yang, L. Zhang, and R.-Y. Zhu
Architecture and Implementation of OpenPET Firmware and Embedded Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F. T. Abu-Nimeh, J. Ito, W. W. Moses, Q. Peng, and W.-S. Choong
Radioactive Contamination Estimation by Airborne Survey Based NaI Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Dadon, A. Broide, M. Sheinfeld, Y. Kadmon, Y. Cohen, and I. Halevy
Development of a Thin, Double-Sided Alpha/Beta Detector for Surface-Contamination Measurement . . . . . . . . . . . . . . . . . Y. Ifergan, S. Dadon,
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Ocherashvili, I. Israelashvili, Y. Yehuda-Zada, D. Smadja, L. Carmel, Y. Knafo,
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Ginzburg, A. Osovizky, R. Atias, Y. Kadmon, Y. Cohen, and T. Mazor

Large Scale Production of Photonic Crystals on Scintillators . . . . . . . . . . . . A. Knapitsch, E. Auffray, G. Barbastathis, C. Chevalier, C.-H. Hsieh,
      . . . . . . . J.-G. Kim, S. Li, M. S. J. Marshall, R. Mazurczyk, P. Modrzynski, V. Nagarkar, I. Papakonstantinou, B. Singh, A. Taylor, and P. Lecoq

Light Extraction from Scintillating Crystals Enhanced by Photonic Crystal Structures Patterned by Focused Ion Beam . . . . . . . . . . P. Modrzynski,
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Jr., T. Gotszalk, A. Knapitsch, P. Kunicki, P. Lecoq, M. Moczala, I. Papakonstantinou, and E. Auffray

Alternative Geometries for Improved Light Output of Inorganic Scintillating Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. V. Nemallapudi, S. Gundacker, R. M. Turtos, M. Vangeleyn, N. Brillouet, P. Lecoq, and E. Auffray
Integrated Semiconductor Quantum Dot Scintillation Detector: Ultimate Limit for Speed and Light Yield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Oktyabrsky, M. Yakimov, V. Tokranov, and P. Murat
Scintillator-Based High-Throughput Fast Timing Spectroscopy for Real-Time Range Verification in Particle Therapy . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Pausch, J. Petzoldt, M. Berthel, W. Enghardt, F. Fiedler, C. Golnik, F. Hueso-González,
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. Lentering, K. Römer, K. Ruhnau, J. Stein, A. Wolf, and T. Kormoll

CsI(Na) Detector Array Characterization for ARES Program . . . . . . . . . . . . . . . . . . . . . B. J. Quiter, T. H. Y. Joshi, M. S. Bandstra, and K. Vetter
Single Side Readout Depth of Interaction Method with Wavelength Discrimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Shimazoe, A. Choghadi, H. Takahashi, and K. Watanabe


Conference Author Index



PART II OF THREE PARTS

CELEBRATING 50 YEARS SINCE THE FIRST IEEE PARTICLE ACCELERATOR CONFERENCE

EDITORIAL
2016 Special Issue Dedicated to Particle Accelerators Comments by the Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Biedron, Y. Ho Chin, P. Craievich, A. Fabris, and R. Zwaska


ACCELERATOR TECHNOLOGY
Ferrite Characterization for the Design of an Accelerating Cavity with Perpendicular Biasing . . . . . . . . J. Eberhardt, F. Caspers, and C. Vollinger
A Compact 500 MHz 65 kW Solid-State Power Amplifier for Accelerator Applications . . . . . . . . . . . . . . . . . . . . . . . . . . M. Gaspar and T. Garvey
History and Technology Developments of Radio Frequency (RF) Systems for Particle Accelerators . . . . . . . . . . . . . . . . . . A. Nassiri, B. Chase,
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. Craievich, A. Fabris, H. Frischholz, J. Jacob, E. Jensen, M. Jensen, R. Kustom, and R. Pasquinelli

Superconducting Magnets for Particle Accelerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Bottura, S. A. Gourlay, A. Yamamoto, and A. V. Zlobin
Optimal Radio-Frequency Power Distribution in a Linear Accelerator Using Beam Energy Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Rezaeizadeh, R. Kalt, T. Schilcher, and R. S. Smith
Research and Development of Nb3Sn Wires and Cables for High-Field Accelerator Magnets . . . . . . . . . . . . . . . . . . . . . E. Barzi and A. V. Zlobin

ADVANCED ACCELERATORS
Towards a Practical Multi-Meter Long Dielectric Wakefield Accelerator: Problems and Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Y. Shchegolkov, E. I. Simakov, and A. A. Zholents


CIRCULAR ELECTRON MACHINES
Electromagnetic Wave Excitation, Propagation and Absorption in High Current Storage Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Novokhatski, J. Seeman, M. Sullivan, and U. Wienands
Simulation of Crab Waist Collisions in DAΦNE with KLOE-2 Interaction Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Zobov, A. Valishev, D. Shatilov, C. Milardi, A. De Santis, A. Drago, and A. Gallo


COMPUTATIONAL ASPECTS
Select Advances in Computational Accelerator Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. R. Cary, D. T. Abell, G. I. Bell. B. M. Cowan,
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. R. King, D. Meiser, I. V. Pogorelov, and G. R. Werner


CONTROLS AND INSTRUMENTATION
An Iterative Learning Control Approach for Radio Frequency Pulse Compressor Amplitude and Phase Modulation . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Rezaeizadeh, R. Kalt, T. Schilcher, and R. S. Smith
A New Concept of Controller for Accelerators’ Magnet Power Supplies . . . . . . . . . . . . . . . . . . . . R. Visintini, S. Cleva, M. Cautero, and T. Ciesla
A Multi-Pinhole Faraday Cup Device for Measurement of Discrete Charge Distribution of Heavy and Light Ions . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. K. Roy, S. Taller, O. Toader, F. Naab, S. Dwaraknath, and G. S. Was
The LLRF System for the S-band RF Plants of the FERMI Linac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Fabris, J. Byrd, G. D’Auria, L. Doolittle,
      . . . . . . . . . . . . . . . . . F. Gelmetti, G. Huang, J. Jones, M. Milloch, M. Predonzani, A. Ratti, T. Rohlev, A. Salom, C. Serrano, and M. Stettler

Real-Time Beam Monitor for Charged Particle Medical Accelerators . . . . . . . . . . . . . . . . . . . . . . . A. Leggieri, D. Passi, F. di Paolo, A. Ciccotelli,
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. De Stefano, F. Marangoni, and G. Felici

Neural Networks for Modeling and Control of Particle Accelerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. L. Edelen, S. G. Biedron,
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. E. Chase, D. Edstrom, Jr., S. V. Milton, and P. Stabile


LIGHT SOURCES
Waveguide-Mode Terahertz Free Electron Lasers Driven by Magnetron-Based Microtrons . . . . . . . . . . . . . . . . . . . . . . . .Y. U. Jeong, S. Miginsky,
      . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Gudkov, K. Lee, J. Mun, G. I. Shim, S. Bae, H.W. Kim, K.-H. Jang, S. Park, S. H. Park, and N. Vinokurov

Interaction Chamber Design for an Energy Continuously Tunable Sub-Mev Laser-Compton Gamma-Ray Source . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Xu, G. Fan, H. Wu, J. Chen, B. Xu, W. Xu, and D. Wang
DAΦNE γ-rays Factory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Alesini, I. Chaikovska, S. Guiducci, C. Milardi, A. Variola, M. Zobov, and F. Zomer
Using Emittance Partitioning Instead of a Laser Heater to Suppress the Microbunch Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. E. Carlsten, K. A. Bishofberger, L. D. Duffy, J. W. Lewellen, Q. R. Marksteiner, and N. A. Yampolsky
Seeded FEL Experiments at the SDUV-FEL Test Facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. T. Zhao and D. Wang


MEDICAL APPLICATIONS
Developments in Accelerators Used for Particle Therapy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. M. Schippers
The Impact of a Clinical Electron Accelerator on the Advancement of Veterinary Oncology and Translational Cancer Research . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. M. LaRue and T. B. Borak


PROTONS AND HEAVY IONS
Beam Tests of Beampipe Coatings for Electron Cloud Mitigation in Fermilab Main Injector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Backfish, J. Eldred, C.-Y. Tan, and R. Zwaska
50 Years of Cyclotron Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Calabretta and M. Seidel
Beam Dynamics for High-Power Superconducting Heavy-Ion Linear Accelerator of RAON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J.-G. Hwang, E.-S. Kim, H.-J. Kim, H. Jang, H.-J. Kim, and D.-O Jeon
Beam Instabilities in Hadron Synchrotrons . . . . . . . . . . . . . . E. Métral, T. Argyropoulos, H. Bartosik, N. Biancacci, X. Buffat, J. F. Esteban Muller,
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. Herr, G. Iadarola, A. Lasheen, K. Li, A. Oeftiger, T. Pieloni, D. Quartullo, G. Rumolo,
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Salvant, E. Shaposhnikova, C. Tambasco, H. Timko, C. Zannini, A. Burov, D. Banfi,
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Barranco, N. Mounet, O. Boine-Frankenheim, U. Niedermayer, V. Kornilov, and S. White

Perspectives of Electron Cyclotron Resonance Ion Sources Beyond the Scaling Laws . . . . . . . . . . . . . . . S. Gammino, L. Celona, and D. Mascali


 

PART III OF THREE PARTS


19TH REAL TIME CONFERENCE (RT2014), NARA, JAPAN, MAY 26–30, 2014
Advanced Data Acquisition System Implementation for the ITER Neutron Diagnostic Use Case Using EPICS and FlexRIO Technology on a
      PXIe Platform
. . . . . . . . . . . . . . . D. Sanz, M. Ruiz, R. Castro, J. Vega, M. Afif, M. Monroe, S. Simrock, T. Debelle, R. Marawar, and B. Glass
JRTF: A Flexible Software Framework for Real-Time Control in Magnetic Confinement Nuclear Fusion Experiments . . . . . . . . . . . . . . . . . . . . . . .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Zhang, G. Z. Zheng, W. Zheng, Z. Chen, T. Yuan, and C. Yang
Real-Time Data Acquisition for Single Photon Imaging Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Hu, X. Wang, Y. Yao, X. Gao, and Ge Jin


21ST SYMPOSIUM ON ROOM-TEMPERATURE SEMICONDUCTOR DETECTORS (RTSD), SEATTLE, WA, USA,
NOVEMBER 8–15, 2014

Deep Levels in n-Type 4H-Silicon Carbide Epitaxial Layers Investigated by Deep-Level Transient Spectroscopy and Isochronal Annealing
      Studies
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. A. Mannan, K. V. Nguyen, R. O. Pak, C. Oner, and K. C. Mandal
Effects of Chemical Treatments on CdZnTe X-Ray and Gamma-Ray Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. U. Egarievwe, A. Hossain,
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. O. Okwechime, A. A. Egarievwe, D. E. Jones, U. N. Roy, and R. B. James


NUCLEAR AND SPACE RADIATION EFFECTS CONFERENCE (NSREC), BOSTON, MA, USA, JULY 13–17, 2015
An Investigation of the Use of Inverse-Mode SiGe HBTs as Switching Pairs for SET-Mitigated RF Mixers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. Song, U. S. Raghunathan, N. E. Lourenco, Z. E. Fleetwood, M. A. Oakley, S. Jung,
      . . . . . . . . . . . . . . . . . . . . . M.-K. Cho, N. J.-H. Roche, A. Khachatrian, J. H. Warner, S. P. Buchner, D. McMorrow, P. Paki, and J. D. Cressler

Effects of Proton Radiation on Noise Performance in Solid-State Photomultipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. J. Chen, E. B. Johnson,
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. J. Stapels, D. Fernandez, M. Podolsky, S. Vogel, and J. F. Christian


REGULAR PAPERS
Validation of Cross Sections for Monte Carlo Simulation of the Photoelectric Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. C. Han, H. S. Kim, M. G. Pia, T. Basaglia, M. Batič, G. Hoff, C. H. Kim, and P. Saracco
Highly Parallelized Pattern Matching Hardware for Fast Tracking at Hadron Colliders . . . . . . . . . . . . . . . . . . . . S. Citraro, A. Annovi, N. Biesuz,
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. Giannetti, P. Luciano, H. Nasimi, M. Piendibene, C.-L. Sotiropoulou, and G. Volpi

32k Channel Readout IC for Single Photon Counting Pixel Detectors with 75 μm Pitch, Dead Time of 85 ns, 9 e− rms Offset Spread and
      2% rms Gain Spread
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. Grybos, P. Kmon, P. Maj, and R. Szczygiel
Sensitivity Enhancement in Radiation Portal Monitoring Using Adaptive Matched Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. M. Cibils
Sparse Approximation-Based Maximum Likelihood Approach for Estimation of Radiological Source Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Lee, P. Singla, T. Singh, and A. Gunatilaka
On Polarization of Compensated Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Ruzin
An Effective Multilevel Offset Correction Technique for Single Photon Counting Pixel Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. Kmon, P. Maj, P. Grybos, and R. Szczygiel
Experimental Validation of Charge-Sensitive Amplifier Configuration that Compensates for Detector Capacitance . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. Kwon, T. Kang, and M. D. Hammig
Pilot Study of the Application of Plastic Scintillation Microspheres to Rn-222 Detection and Measurement . . . . . . . . . . . . . K.Mitev, I. Dimitrova,
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Tarancón, D. Pressyanov, L. Tsankov, T. Boshkova, S. Georgiev, R. Sekalova, and J. F. García

A Comparison of the Detection Sensitivity of the Poisson Clutter Split and Region of Interest Algorithms on theRadMAP Mobile System . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. H. Joshi, R. J. Cooper, J. Curtis, M. Bandstra, B. R. Cosofret, K. Shokhirev, and D. Konno
Capture-Gated Spectroscopic Measurements of Monoenergetic Neutrons with a Composite Scintillation Detector . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Nattress, M. Mayer, A. Foster, A. B. Meddeb, C. Trivelpiece, Z. Ounaies, and I. Jovanovic
Investigation of Spatial Control Strategies for AHWR: A Comparative Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. K. Munje, B. M. Patre, P. S. Londhe, A. P. Tiwari, and S. R. Shimjith
Logic-I/O Threshold Comparing γ-Dosimeter in Radiation Insensitive Deep-Sub-Micron CMOS . . . . . . . . . . . A. Tang, Y. Kim, and M.-C. F. Chang
Impact of Bias Conditions on Total Ionizing Dose Effects of 60Coγ in SiGe HBT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Zhang, Q. Guo, H. Guo, W. Lu, C. He, X. Wang, P. Li, and M. Liu
On the Validity of Certain Approximations Used in the Modeling of Nuclear EMP . . . . . . . . . . . . . . . . . W. A. Farmer, B. I. Cohen, and C. D. Eng
NBTI and Irradiation Effects in P-Channel Power VDMOS Transistors . . . . . . . . . . . . . . . . . . . . . . . V. Davidović, D. Danković, A. Ilić, I. Manić,
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Golubović, S. Djorić-Veljković, Z. Prijić, and N. Stojadinović

Characterizing Radiation and Stress-Induced Degradation in an Embedded Split-Gate NOR Flash Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. R. Duncan, M. J. Gadlage, A. H. Roach, and M. J. Kay
Evaluation of Radiation Sensor Aspects of Er2O3 MOS Capacitors under Zero Gate Bias . . . . . . A. Kahraman, E. Yilmaz, A. Aktag, and S. Kaya
Analysis of SRAM-Based FPGA SEU Sensitivity to Combined EMI and TID-Imprinted Effects . . . . . . . . . . . J. Benfica, B. Green, B. C. Porcher,
      . . . . . . . . . . . . . . . . . . . L. B. Poehls, F. Vargas, N. H. Medina, N. Added, V. A. P. de Aguiar, E. L. A. Macchione, F. Aguirre, M. A. G. Silveira,
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Perez, M. S. Haro, I. Sidelnik, J. Blostein, J. Lipovetzky, and E. A. Bezerra

A Detailed Study on Zero–Bias Irradiation Responses of La2O3 MOS Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E. Yilmaz and S. Kaya
Leakage Current of Grounded Dielectrics in Electron Radiation as a Diagnostic Method to Evaluate the Deep Charging Hazards in Space . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Y. XiangQian, C. HongFei, Z. QiuGang,W. JianZhao, S.WeiHong, Z. Hong, Z. JiQing,
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z.WeiYing, C. Zhe, S. SiPei, and J. XiangHong

Commissioning and Field Tests of a Van-Mounted System for the Detection of Radioactive Sources and Special Nuclear Material . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . D. Cester, M. Lunardon, L. Stevanato, G. Viesti, R. Chandra, G. Davatz, H. Friederich, U. Gendotti, D. Murer,
      . . . . . . . . . . . . . . . J. Iwanowska-Hanke, P. Sibczynski, M. Moszynski, L. Swiderski, F. Resnati, A. Rubbia, A. Iovene, S. Petrucci, C. Tintori,
      . . . . . . . . . . . . . M. Caccia, V. Chmill, R. Santoro, A. Martemyianov, M. Doherty, J. L. Carrol, G. Christodoulou, T. Stainer, and C. Touramanis


Accessibility | Privacy and Opting Out of Cookies | Nondiscrimination Policy

Copyright 2016 IEEE - All rights reserved. Use of this newsletter site signifies your agreement to the IEEE Terms and Conditions.
A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. [Response: Read Receipt]

If you would like to be removed from this email distribution, please [Response: Unsubscribe from List].
If you have unsubscribed in error, please [Response: Subscribe to List].
To unsubscribe from all mailings, use your IEEE Account to update your "Personal Profile and Communication Preferences."

Replies to this message will not reach IEEE. Due to local email service/provider settings, random characters may appear in some instances.

Although the IEEE is pleased to offer the privilege of membership to individuals and groups in the OFAC embargoed countries, the IEEE cannot offer certain services to members from such countries.

IEEE
445 Hoes Lane
Piscataway, NJ 08854 USA
+1 800 678 4333 (toll free, US & Canada)
+1 732 981 0060 (Worldwide)

For more information or questions regarding your IEEE Membership or IEEE Account, please direct your inquiries to the IEEE Contact Center.