T-NPS Header
T-PS Home Editorial Board T-PS in IEEE Xplore Early Access Manuscript Submission
FEATURED STORIES - OCTOBER 2014

Calculation of the effective ionization rate in air taking into account electron detachment from negative ions


The effective Townsend ionization coefficient in dry air at different pressures and temperatures is calculated by considering ionization by direct electron impact, attachment of electrons to molecular oxygen, simplified negative ion kinetics, and detachment of electrons from negative ions in collisions with heavy neutrals....more

-----------------------

Corrugated Waveguide Mode Content Analysis Using Irradiance Moments



We present a novel, relatively simple method for determining the mode content of the linearly polarized modes of a corrugated waveguide using the moments of the intensity pattern of the field radiated from the end of the waveguide. This irradiance moment method is based on calculating the low-order irradiance moments, using measured intensity profiles only, of the radiated field from the waveguide aperture...more

-----------------------

Spatially Dispersive Ferrite Nonlinear Transmission Line with Axial Bias



A spatially dispersive nonlinear transmission line (NLTL) using axially biased ferrite as the nonlinear medium has been developed. The NLTL is frequency tunable from 0.95 to 1.45 GHz with adjustment of the axial biasing field. A circuit model describing the dispersion of the line has been developed and compared with experimental measurements and time and frequency domain simulations...more

-----------------------

Low-Temperature Naturatron Sputtering System for Deposition of Indium Tin Oxide (ITO) Film



In this paper, we have newly developed a metal thin film-forming sputtering system using the Naturatron Sputtering method that can prevent the plastic film from suffering damage caused by the high-energy particles in plasma and carry out the low-temperature high-density metal deposition with a sputtering chamber and a film deposition chamber separated from each other...more

-----------------------

A Novel Arc Model for Very Fast Transient Over Voltage Simulation in a 252kV Gas Insulated Switchgear



One of the important issues of concerns for gas-insulated switchgear (GIS) is the generation of very fast transient overvoltage (VFTO) during switching operations, especially at operational voltage levels of 330 kV and beyond. It becomes extremely important to build an arc model for VFTO simulation, since the arc determines VFTO characteristics to a great extent. However, existing arc models for VFTO simulation are too simple to provide ...more

-----------------------

Instrumentation for neutron flux and tritium production rate monitoring in the European TBM in ITER



The transient events could pose a severe tread causing a melting and erosion of plasma-facing components in the fusion power plant DEMO. Here we analyze the impact of the edge-localized modes (ELMs) on the divertor target and the first wall (FW) surface...more

-----------------------

A PUBLICATION OF THE IEEE NUCLEAR AND PLASMA SCIENCES SOCIETY



OCTOBER 2014

VOLUME 42

NUMBER 10

ITPSBD

(SSN 0093-3813)

PART I OF THREE PARTS (FULL LIST)

[Response: Read Receipt]

7TH TRIENNIAL SPECIAL ISSUE ON IMAGES IN PLASMA SCIENCE


GUEST EDITORIAL
7th Triennial Special Issue on Images in Plasma Science . . . . . . . . . . . . . . . . . . . . . . . . A. Agarwal, D. Shiffler, X. Lu, W. White, and M. Sankaran

SPECIAL ISSUE PAPERS
Atmospheric Pressure Glows Discharges and Dielectric Barrier Discharges
Experimental Study on the Pattern Structure of a Boundaryless, 1-D Dielectric Barrier Discharges Using a Ring Electrode . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Wang, J. Zhang, S.-Z. Li, and D. Wang
Study on the Arc Levitation Behaviors of AC Partial Arc on a Wet Contaminated Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Yang, L. Pang, X. Yang, X. Yu, and J. Zhou
Study on the Effects of Dielectric Barrier Discharge on the Bunsen Flame Structure With OH-PLIF Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H.-B. Mu, L. Yu, P. Li, M. Zhang, C.-L. Tang, J.-H. Wang, Z.-H. Huang, and G.-J. Zhang
Coplanar Dielectric Barrier Discharge on a High-Permittivity Dielectric Surface . . . . . . . . . . . . . . . . . . . . . . . . . J. Rahel, T. Moravek, and Z. Szalay
Visualization of a Coaxial Dielectric Barrier Discharge Driven by a Sub-ns Rising High-Voltage Pulse and Its Reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Höft, T. Huiskamp, M. Kettlitz, and A. J. M. (Guus) Pemen
Production of Ammonia by Heterogeneous Catalysis in a Packed-Bed Dielectric-Barrier Discharge: Influence of Argon Addition and Voltage . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Hong, S. Prawer, and A. B. Murphy
Effect of Pulse Polarity on Nanosecond Surface Dielectric Barrier Discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .L. Pang, K. He, and D. X. Di
Dynamics of Mode Transition in Air Dielectric Barrier Discharge by Controlling Pressures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Wu, Z. Wang, Q. Huang, W. Wang, S. Yu, C. Zou, Y. Lu, and X. Lu
On the Influence of Anode Composition on the Pattern of a Nanosecond Diffuse Discharge at Atmospheric Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . A. Chollet, P. Jeanney, S. Pasquiers, P. Tardiveau, and P. Désesquelles
Large Conical Discharge Structure of an Air Discharge at Atmospheric Pressure in a Point-to-Plane Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F. Pechereau, P. L. Delliou, J. Jánský, P. Tardiveau, S. Pasquiers, and A. Bourdon
Atmospheric Pressure RF Discharge in Neon and Helium . . . . . . . . . . . . . R. Josepson, Z. Navrátil, L. Dosoudilová, P. Dvořák, and D. Trunec
Schlieren Imaging of Shock-Wave Formation Induced by Ultrafast Heating of a Nanosecond Repetitively Pulsed Discharge in Air . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .D. A. Xu, D. A. Lacoste, and C. O. Laux
Influence of Ambient-Air Nitrogen on the Argon Plasma Generated by a TIAGO Torch Open to Atmosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. Rincón, J. Muñoz, and M. D. Calzada
Comparison of μs- and ns-Pulse Gliding Discharges in Air Flow . . . . . . . . . . . . . . . . . . . . . C. Zhang, T. Shao, H. Ma, C. Ren, P. Yan, and Y. Zhou
Large-Scale Nonthermal Plasma Generated by Repetitive Nanosecond Pulses and Barrier-Free Wire Electrodes in Atmospheric
      Pressure Air
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y.-L. Liu, L. Li, B. Yu, Y.-F. Ge, Y. Le, H. Wen, M. Ning, and F.-C. Lin
Propagation of a Dielectric Barrier Discharge in a Multichannel Mixing Chip Microreactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .S. Stauss, C. Ishii, K. Kuribara, K. Urabe, and K. Terashima
Glow-Like Helium and Filament-Like Argon Plasma Jets of Using a Dielectric Barrier Configuration at Atmospheric Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Q. Li, H. Takana, Y.-K. Pu, and H. Nishiyama
Rotating Concentric Spot-Ring Pattern in a Dielectric Barrier Discharge System . . . . . . . . . . . J. Yang, L. Dong, P. Zhu, C. Zhang, and X. Zhang
Flexible Dielectric Barrier Discharge Reactor With Water and Teflon Dielectric Layers . . . . . . . . . . H.-W. Park, I. J. Cho, S. Choi, and D.-W. Park
Organization of Dielectric Barrier Discharges in the Presence of Structurally Inhomogeneous Wood Substrates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O. Levasseur, A. Bouarouri, N. Naudé, R. Clergereaux, N. Gherardi, and L. Stafford
Inducing a Dielectric Barrier Discharge Plasma Within a Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. J. Cullen, N. N. Misra, L. Han, P. Bourke, K. Keener, C. O’Donnell, T. Moiseev, J. P. Mosnier, and V. Milosavljević
Characteristics of a Dielectric Barrier Discharge Reactor With Two L-Shaped Electrodes Working in Helium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Hur, W. S. Kang, and Y. H. Song
Development of a Single Filament Pulsed Dielectric Barrier Discharge in Volume and on Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Höft, M. Kettlitz, T. Hoder, R. Brandenburg, and K.-D. Weltmann
Striated Structure of Constricted Discharges in Coplanar Dielectric Barrier Discharge in Neon . . . . . . . . . . . . . . . . . . . . . .X. Zhao and J. Ouyang
Ion Distribution Functions in Electrically Asymmetric Capacitively Coupled Radio-Frequency Discharges in Hydrogen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Mohr, E. Schüngel, J. Schulze, and U. Czarnetzki
Coaxial Diffuse Discharges Driven by Repetitive Nanosecond Pulses at Different Air Pressures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .C. Zhang, T. Shao, Z. Zhou, W. Yang, V. F. Tarasenko, and P. Yan
Arc Contact Ablation: High Speed Camera Visualization . . . . . M. Masquère, K. Hernandez, P. Freton, J.-J. Gonzalez, and M. Razafinimanana
Study on Dynamic Characteristic in Force Interrupted DC Vacuum Arc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Bin, W. Jianwen, and X. Chao
Power Dependence of the Pink Afterglow in Flowing Postdischarge in Pure Nitrogen . . . . . . . F. Krčma, V. Mazánková, I. Soural, and V. Guerra
A Nonthermal Plasma Cage Using Repetitive Nanosecond Pulse Source in the Open Air . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Teng, L. Li, L.-Q. Jiang, W. Hu, L. Liu, and M.-H. Liu
The Glow in a Three-Body Recombination Dominated Afterglow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. V. Tsankov, S. Siepa, P. S. Böhm, D. Luggenhölscher, and U. Czarnetzki
Inductive Discharge Driving by Oblique Field Penetration Into the Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. P. Demerdzhiev, K. T. Tarnev, S. S. Lishev, D. Y. Yordanov, and A. P. Shivarova

click to see complete Part I of Table of Contents




PART II OF THREE PARTS

SPECIAL ISSUE ON PULSED POWER SCIENCE AND TECHNOLOGY


GUEST EDITORIAL
Special Issue on Pulsed Power Science and Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. P. Joshi, D. Wang, D. Wetz, and M. Sinclair

SPECIAL ISSUE PAPERS
Pulsed Power Technologies
A 10 GW Tesla-Driven Blumlein Pulsed Power Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. M. Novac, M. Wang, I. R. Smith, and P. Senior
Operation of a 2.4-MJ Pulsed Power System for Railgun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B. Lee, S. An, S.-H. Kim, Y.-H. Lee, K.-S. Yang, Y.-S. Jin, Y.-B. Kim, J. Kim, C. Cho, S.-H. Yoon, and I.-S. Koo
Performance Evaluation of Pulse Compressor-Based Modulators With Very Fast Rise Times for Plasma Channel Drilling . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T. Hobejogi and J. Biela
The Prototype Inductive Adder With Droop Compensation for the CLIC Kicker Systems . . . . . . . . . . . . . . . . . . . . . . . . . J. Holma and M. J. Barnes
Nanosecond High-Voltage Pulse Generator Using a Spiral Blumlein PFL for Electromagnetic Interference Test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .S. W. Lim, S. Katsuki, Y. S. Jin, C. Cho, and Y. B. Kim
100-kV High Voltage Power Supply With Bipolar Voltage Output and Adaptive Digital Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. G. Giesselmann, T. T. Vollmer, and W. J. Carey
Transportable High-Energy High-Current Inductive Storage GW Generator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . .B. M. Novac, I. R. Smith, P. Senior, M. Parker, G. Louverdis, L. Pecastaing, A. S. de Ferron, P. Pignolet, and S. Souakri
Electrical Design and Operation of the Phelix Pulsed Power System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. A. Reass, D. M. Baca, J. R. Griego, D. M. Oro, R. E. Reinovsky, C. L. Rousculp, and P. J. Turchi
Laser Triggering of Spark Gap Switches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Larsson, D. Yap, J. Au, and T. E. Carlsson
Evaluation of a Hybrid Energy Storage Module for Pulsed Power Applications. . . . . . . . I. J. Cohen, J. P. Kelley, D. A. Wetz, Jr., and J. Heinzel
Multilevel High-Voltage Pulse Generation Based on a New Modular Solid-State Switch. . . . . . . . . . .L. L. Rocha, J. F. Silva, and L. M. Redondo
Reliable Fiber-Optic Triggering of a 50-kV Switch Using 532-nm Laser Light. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. E. Beverly III
Evaluation of SiC JFET Performance During Repetitive Pulsed Switching Into an Unclamped Inductive Load. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . B. N. Pushpakaran, M. Hinojosa, S. B. Bayne, V. Veliadis, D. Urciuoli, N. El-Hinnawy, P. Borodulin, S. Gupta, and
C. Scozzie
Investigation of Switch Designs for the Dynamic Load Current Multiplier Scheme on the SPHYNX Microsecond Linear Transformer Driver . . . . . . . . T. Maysonnave, F. Bayol, G. Demol, T. d’Almeida, F. Lassalle, A. Morell, J. Grunenwald, A. S. Chuvatin, L. Pecastaing, and A. S. D. Ferron
Investigation of GaAs PCSS Triggered by Laser Pulses With Different Parameters. . . . . . . . . . . . . . . . . . . . T. Zhang, B. Wang, J. Qiu, and K. Liu
Online Measurement of Pulsed Electric Field of Insulator Surface in Vacuum Based on Kerr Effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. Liu, Y. Fu, X. Zou, P. Wang, and X. Wang
Multifunctional Controller Architecture for Solid-State Marx Modulator Based on FPGA. . . . . . . . . . . . . F. Pereira, L. Gomes, and L. M. Redondo
Circuit Modeling for PTS’s Magnetically Insulated Transmission Lines. . . . . . . . . . . . . . . . . . . . S. Y. Song, Y. C. Guan, W. K. Zou, and J. J. Deng
Transformer Oil Breakdown Dynamics Stressed by Fast Impulse Voltages: Experimental and Modeling Investigation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Li, M. X. Zhu, H. B. Mu, J. B. Deng, G. J. Zhang, J. Jadidian, M. Zahn, W. Z. Zhang, and Z. M. Li
Optimal Design of a Modular Series Parallel Resonant Converter for a Solid State 2.88 MW/115-kV Long Pulse Modulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Jaritz and J. Biela
Low-Ripple and High-Precision High-Voltage DC Power Supply for Pulsed Power Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S.-H. Ahn, H.-J. Ryoo, J.-W. Gong, and S.-R. Jang
Electrochemical Energy Storage Devices in Pulsed Power. . . . . . . . . . . . . . D. A. Wetz, P. M. Novak, B. Shrestha, J. Heinzel, and S. T. Donahue
Modular High-Current Generator for Electromagnetic Forming With Energy Recovery. . . . . . . . . . . . . L. M. Redondo, T. Jorge, and M. T. Pereira
Solid-State Bipolar Marx Modulator Modeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Canacsinh, L. M. Redondo, J. F. Silva, and E. Schamiloglu
Azimuthal Transmission Lines for Inductive Voltage Adders With Four PFLs Driving Simultaneously or Separately. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Wei, F. Sun, A. Qiu, J. Zeng, T. Liang, J. Yin, and Y. Hu
Degradation of Performance Due to Electrode Erosion in Field Distortion Gas Switch in Long-Term Repetitive Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Li, X. Liu, X. Gou, F. Zeng, and Q. Zhang
Interconnected High-Voltage Pulsed-Power Converters System Design for H Ion Sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Aguglia
Particle Detection in Vacuum Interrupter: Preliminary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Xu, K. Hidaka, E. Kaneko, A. Kumada, and H. Ikeda
Compact Pulse Topology for Adjustable High-Voltage Pulse Generation Using an SOS Diode. . . . . . . . . . . . . . . . . . . . . . . . . A. B. J. M. Driessen,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E. J. M. van Heesch, T. Huiskamp, F. J. C. M. Beckers, and A. J. M. Pemen

click to see complete Part II of Table of Contents




PART III OF THREE PARTS



REGULAR PAPERS
Basic Processes in Fully and Partially Ionized Plasmas
Series Circuit Resistance as Factor of DBD Mode in Air at Different Barrier Materials.. . . . . . . . . . . . . . . . . . . . . . . . V. Y. Khomich, M. V. Malashin,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. I. Moshkunov, E. A. Shershunova, and V. A. Yamschikov

Electrode-Gap Effects on the Discharge Structure in Atmospheric Radio-Frequency Microplasmas With He/O2. . . . . . . . Y.-T. Zhang and L. Ge
Calculation of the Effective Ionization Rate in Air Taking Into Account Electron Detachment From Negative Ions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Chachereau and S. Pancheshnyi

Microwave Generation and Microwave-Plasma Interaction
Extremely Broad Bandwidth Input/Output Coupling Structure Design for a Q-band Sheet-Beam Traveling-Wave Tube. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Zheng, J. Wang, and Y. Luo
Operation Characteristics of A6 Relativistic Magnetron Using Single-Stepped Cavities With Axial Extraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .M. Liu, M. I. Fuks, E. Schamiloglu, and C. Liu
Theoretical and Experimental Study of the Modified Pill-Box Window for the 220-GHz Folded Waveguide BWO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Cai, L. Hu, G. Ma, H. Chen, X. Jin, and H. Chen
Corrugated Waveguide Mode Content Analysis Using Irradiance Moments. . . . . . . . . . . . . . S. K. Jawla, M. A. Shapiro, H. Idei, and R. J. Temkin
Effects of Reentry Plasma Sheath on the Polarization Properties of Obliquely Incident EM waves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Bai, X. Li, Y. Liu, J. Xu, L. Shi, and K. Xie
Electromagnetic and Particle-in-Cell Simulation Studies of a High Power Strap and Vane CW Magnetron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. K. Vyas, S. Maurya, and V. P. Singh
Design and Experimental Study of a Widebandwidth W-Band Folded Waveguide Continuous-Wave TWT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Hu, J. Feng, J. Cai, X. Wu, Y. Du, J. Liu, J. Chen, and X. Zhang
Spatially Dispersive Ferrite Nonlinear Transmission Line With Axial Bias. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. M. French and B. W. Hoff

Industrial, Commercial, and Medical Applications of Plasmas

Low-Temperature Naturatron Sputtering System for Deposition of Indium Tin Oxide Film. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .N. Thungsuk, T. Yuji, N. Kasayapanand, N. Mungkung, P. Nuachauy, S. Arunrungrusmi,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Nakabayashi, Y. Okamura, H. Kinoshita, H. Kataoka, Y. Suzaki, and T. Hirata

Plasma Diagnostics

Tokamak Plasma Parameters in the Presence of Resonant Field and Biased Electrode. . . . . . . . . . . . . . . . . . .
A. S. Elahi and M. Ghoranneviss
High-Speed Camera on Molten Pool in Transferred Arc Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Stadler, M. Masquère, J. Mougenot, P. Freton, and J.-J. Gonzalez

Pulsed Power Science and Technology

Effect of Subatmospheric Pressure on Deposited Energy for Electrical Wire Explosion in Air. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Q. Zhou, Q. Zhang, X. Liu, G. Wu, W. Song, L. Yu, B. Deng, and R. Chen
Energy Analysis of a Pulsed Inductive Plasma Through Circuit Simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. A. Pahl and J. L. Rovey
Design of an X-Band Gigawatt Multibeam Relativistic Klystron Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Z. Liu, H. Huang, X. Jin, and L. Lei

Arcs & MHD

A Novel Arc Model for Very Fast Transient Overvoltage Simulation in a 252-kV Gas-Insulated Switchgear. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Zhan, S. Duan, C. Li, L. Yao, and L. Zhao

Special Issue on High Power Microwave Generation - 2014

Design of Folded Waveguide Slow-Wave Structure for W-Band TWT. . . . . . . . K. Sharma, A. Grede, S. Chaudhary, V. Srivastava, and H. Henke
X-Band Relativistic Cherenkov Microwave Oscillator With Increased Cross-Sectional Electron Beam. . . . . . . . . . . . . . . . . . . . . . E. M. Totmeninov

Special Issue - Selected Papers From SOFE 2013

Instrumentation for Neutron Flux and Tritium Production Rate Monitoring in the European TBM in ITER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Klix, M. Angelone, U. Fischer, D. Gehre, G. Kleizer, A. Lyoussi, T. Ruecker, I. Rovni, and D. Szalkai


ANNOUNCEMENTS
Call for Papers-Special Issue on Vacuum Discharge Plasmas
Call for Papers-Special Issue for Selected Papers from EAPPC 2014
Call for Papers-Special Issue on Spacecraft Charging Technology
Contact & Support  |   Privacy & Opting Out of Cookies   |   Terms & Conditions   |   Nondiscrimination Policy
A non-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this newsletter signifies your agreement to the terms and conditions.
To unsubscribe from all mailings, use your IEEE Account to update your "Personal Profile and Communication Preferences."

Replies to this message will not reach IEEE. Due to local e-mail service/provider settings, random characters may appear in some instances.

Although the IEEE is pleased to offer the privilege of membership to individuals and groups in the OFAC embargoed countries, the IEEE cannot offer certain services to members from such countries.

IEEE
445 Hoes Lane
Piscataway, NJ 08854 USA
+1 800 678 4333 (toll free, US & Canada)
+1 732 981 0060 (Worldwide)

For more information or questions regarding your IEEE membership or IEEE Web Account, please direct your inquiries to the IEEE Contact Center.